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Abstract

Cell–cell adhesions maintain the mechanical integrity of multicellular tissues and have recently 

been found to act as mechanotransducers, translating mechanical cues into biochemical signals. 

Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate 

attachment. These studies leverage technical advances in devices and systems interfacing with 

living cells through cell–extracellular matrix adhesions. As reports of aberrant signal transduction 

originating from mutations in cell–cell adhesion molecules are being increasingly associated with 

disease states, growing attention is being paid to this intercellular signaling hub. Along with this 

renewed focus, new requirements arise for the interrogation and stimulation of cell–cell adhesive 

junctions. This review covers established experimental techniques for stimulation and 

interrogation of cell–cell adhesion from cell pairs to monolayers.

Keywords

Mechanobiology; Cell–cell adhesion; Cell mechanics; BioMEMS; FRET

*Corresponding author at: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, United States., 
espinosa@northwestern.edu (H.D. Espinosa). 

HHS Public Access
Author manuscript
Extreme Mech Lett. Author manuscript; available in PMC 2018 October 11.

Published in final edited form as:
Extreme Mech Lett. 2018 April ; 20: 125–139. doi:10.1016/j.eml.2017.12.002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Introduction

Our bodies experience a wide variety of mechanical inputs on a continuous basis. Whether 

from opening a door, noticing a tap on the shoulder, or perceiving the acceleration of an 

elevator, our brains translate physical forces into information that we use to understand and 

interact with our environment. In a similar way, cells within our body’s tissues generate, 

sense, and respond to mechanical cues within their local environment to direct normal 

physiological processes, and when things go awry, aberrant mechanical signaling can lead to 

the development and progression of disease.

In the body, physical forces are generated by and transmitted through the musculoskeletal 

system comprising bones and muscles as well as the structures that hold them together: 

joints, ligaments and tendons. In cells, this function is performed by cytoskeletal filaments 

and their associated adhesive organelles [1]. Cell–cell and cell–extracellular matrix (ECM) 

adhesive organelles are macromolecular structures that integrate individual cells into 

complex tissues by anchoring cytoskeletal components [2]. They have been the subject of 

intensive scientific investigation due to their importance in cell and tissue mechanics, 

bridging the gap between interactions at the molecular level to forces at the cellular scale. In 

recent years, attention has shifted toward understanding the integral roles cell–cell adhesions 

play in transducing mechanical cues into biochemical signals, a process often referred to as 

mechanotransduction [3]. Under normal homeostatic conditions, the adhesion/cytoskeleton 

systems form a highly integrated network that regulates tissue morphogenesis, collective cell 

migration, cell proliferation, and differentiation [4]. However, a number of pathological 

conditions and developmental disorders, including skin disorders [5], arthritis [6], 

atherosclerosis [7], and cancer [8], may emerge from aberrant cell–cell adhesion or 

mechanical cues. Hence, the study of cell–cell adhesion has taken center stage aiming to 

understand its capacity in maintaining tissue- and cell-level mechanical integrity and more 

importantly, in converting forces and stresses at the cell–cell junction into regulatory 

pathways that dictate cell behavior.

Over the past two decades, we have witnessed a wide variety of techniques to stimulate and 

probe cells in vitro. With the advancement and wide adoption of these techniques, we have 

established a large body of literature about how cells move, differentiate, connect with other 

cells and probe their environment. The techniques were not invented for the sole purpose of 

studying cell–cell adhesion; rather they were designed to probe mechanical responses and/or 

to stimulate biochemical responses in cells interacting physically in their suspended or 

adherent states. The consequence was that investigators gained many insights about how 

adhesive organelles give rise to cell and tissue level architecture. The majority of the 

techniques were designed to stimulate and probe cell–ECM interactions, which serve at the 

forefront of the physical interaction between cells and their external environment. During the 

course of such studies, we have learned that cell–cell interactions work together with and 

even regulate cell–ECM adhesions. Some of the probing and stimulation techniques require 

the presence of robust cell–cell junctions. Here, we present techniques that have been widely 

used to explore cell mechanics, and then how they can be applied for use in cell–cell 

adhesion studies.

Yang et al. Page 2

Extreme Mech Lett. Author manuscript; available in PMC 2018 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Cell–cell adhesion complexes

There are four main types of specialized cell–cell junctions in mammalian cells. These 

include tight junctions, gap junctions, adherens junctions, and desmosomes [9,10]. Tight 

junctions seal the paracellular space, limiting the passage of molecules and ions through the 

space between cells, and stopping the movement of membrane proteins between the upper 

and lower portions of the cell [11]. Gap junctions function as pores between adjoining cells, 

allowing molecules, ions, and electrical currents to pass directly between cells [9]. This 

review will focus on adherens junctions and desmosomes, which are cadherin-based 

intercellular junctions that link to the actin and intermediate filament (IF) cytoskeletons, 

respectively (Fig. 1a).

2.1. Adherens junctions

Adherens junctions (AJs) are multiprotein complexes whose core components comprise 

transmembrane classical cadherins and intracellular armadillo family members (Fig. 1b). 

The extra-cellular domains of the classical cadherins, including E-cadherin, N-cadherin, VE-

cadherin, and P-cadherin, form both hetero- and homophilic interactions and through 

calcium-dependent trans interactions link neighboring cells together [12]. On the 

intracellular side, they provide a platform for the recruitment of armadillo proteins p120 

catenin and β-catenin. α-catenin interacts with β-catenin and provides the linkage to the 

actin cytoskeleton. Many of the classical cadherins have been shown to be mechanically 

sensitive [13], some capable of forming catch-bonds that strengthen and become longer lived 

in the presence of mechanical force [14]. Moreover, both extracellular and intracellular 

mechanical stimuli can promote force-mediated stabilization of the AJ/actin linkage through 

recruitment of the actin binding protein vinculin, which occurs through a conformational 

change in α-catenin that reveals a vinculin binding site [15].

2.2. Desmosomes

Desmosomes are also calcium-dependent adhesive junctions and have a molecular 

organization similar to that of the AJ (Fig. 1c) [16]. Desmosomal cadherins, which in 

humans include desmogleins (Dsg1–4) and desmocollins (Dsc1–3), are expressed in a 

tissue-type and differentiation-dependent manner [17,18]. They can form hetero- and/or 

homophilic trans interactions between their extracellular domains, though compared with 

classical cadherins these interactions are not as well understood [16,19]. The intracellular 

portions of desmosomal cadherins recruit the armadillo proteins plakoglobin and 

plakophilins. These interact with the plakin protein family member desmoplakin (DP), 

which in turn links the desmosomal core to the IF cytoskeleton [16]. The roles of the 

desmosome/IF network in mechanical signaling are not well understood. However, removing 

the keratin IF system was shown to affect the mechanical properties of cells as well as their 

ability to migrate [20]. Moreover, manipulating the strength of the desmosome/IF linkage 

using DP mutants regulates both intercellular forces in cell pairs and cell stiffness in cell 

pairs and larger groups of cells, through a process involving the actin cytoskeleton [21].
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3. Techniques to study cell–cell adhesion

A wide variety of techniques have been used to study the mechanics of living cells. Early 

studies were done on groups of cells, using techniques such as substrate deformation, in 

which cells are cultured on a deformable substrate, and then subjected to a uniform 

monotonic or cyclic strain. To recapitulate the effects of fluid flow on cell layers, flow-

induced shear experiments have also been performed, in which a fluid flowing over a cell 

layer imposes shear stress on the cells. To investigate cell-substrate and cell–cell 

interactions, traction force microscopy and micropost substrates were developed to enable 

the measurement of forces exerted by cells while stationary or in motion. In many instances, 

the mechanical properties of individual cells or cell pairs is of interest because they provide 

insight into how cells physically adapt to extracellular stimuli and their microenvironment. 

In such cases, methods with single cell resolution are employed. They include atomic force 

microscopy (AFM), optical traps/optical tweezers, magnetic beads, micropipette aspiration, 

and laser ablation. Another method to probe cell mechanical responses employs micro-

electro mechanical systems (MEMS). These devices take advantage of actuators and sensors, 

with tunable displacement and force measurement resolution, by either directly attaching to 

the cell or moving a structure that the cell is attached to (resolutions for force and 

displacement are listed in Table 1). Some examples of microfabricated devices include 

uniaxial and biaxial pullers, micropillars, and cantilever beams.

3.1. Cell monolayer studies

3.1.1. Deformable substrates—By culturing cells on the surface of a deformable 

substrate, strains can easily be imposed on the cells by manipulating the substrate. Uniaxial 

and biaxial strains can be achieved, depending on how the substrate is deformed. There have 

been many studies on a variety of cell types, including bone tissue [22,39,40], lung cells 

[41,42], and neurons [43]. In addition, this method has been used to study cyclic loading on 

cell groups [23,44,45]. The mechanical properties of the substrate can be controlled by 

altering its thickness or its chemical composition [46], which in turn will affect the stiffness 

of the substrate, allowing for finer control over strain levels imposed on cells. Overall, this 

technique is simple to implement, but it does not offer high displacement resolution 

compared to other techniques.

Substrate deformation can be achieved by two modalities. The first is by stretching the 

substrate longitudinally. This method has been demonstrated to impose uniform longitudinal 

stresses on cells on the substrate uniaxially (Fig. 2a) or biaxially (Fig. 2b) and can also be 

used to impose oscillating stresses on cells [47,48]. The other method is substrate flection, in 

which the substrate is bent, usually using four-point bending [49] (Fig. 2c). This method 

offers the ability to achieve low strains, and has also been demonstrated to impose uniform 

longitudinal stresses on cells. Many studies have also used circular substrates with out-of-

plane and in-plane deformation [50]. An issue with out-of-plane deformation is the 

heterogeneity of the strain imposed on the substrate. The radial component of strain is 

usually uniform, but the circumferential component varies from zero at the ends to some 

maximum in the center. In-plane deformation has been used to avoid problems of 

heterogeneous strain distributions that result from out-of-plane deformation. One in-plane 
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deformation method is stretching the substrate around a circular ring (not shown, similar to 

Fig. 2e). This method is similar to the out-of-plane technique of stretching the substrate 

around a curved template (Fig. 2d), but with this method, the portion of the substrate inside 

the ring remains on a single plane, resulting in uniform strain distributions [51–53]. 

Similarly, a vacuum can be used to stretch a circular substrate around the perimeter of a 

raised central cylindrical platform (Fig. 2e). The portion of the substrate on the platform 

remains on a single plane, resulting in uniform strain distributions. This method has found 

wide success in commercialized systems such as Flexcell.

Early attempts to stimulate a group of cells with mechanical strain aimed to understand their 

change in material properties in response to the stimulation [41,42], while underlying 

mechanisms of the biochemical and subsequently the biophysical responses are limited. This 

is mainly due to the nature of the technique but also the lack of tools to follow cellular 

responses at a small scale. In recent years, cyclic stretching with equiaxial strain generated 

most of the significant findings in how different cell types respond to oscillating strain. 

Commercialized instrumentation makes it a readily available technique in many biological 

labs; the capacity to work within the physiological cell culture condition propels its wide 

acceptance. The effects of cyclic stretching on the reorganization of cytoskeleton, the 

proliferation of different types of cells and the differentiation of stem cells have all been 

reported [54–57].

Stretch can be used to study mechanotransduction, as the process, in general, involves force-

induced conformational changes in a mechanosensor protein that trigger additional protein–

protein interactions. It is widely accepted that applied strains from stretching unfolds 

adhesion molecules in focal adhesion (FA) sites. For example, stretching induces 

conformational changes in the FA protein talin, which activates vinculin recruitment and 

ultimately leads to actin filament clustering and FA enhancement in a force-dependent 

manner [58]. Therefore, stretch can be used as a tool to examine force-induced alterations in 

mechanosensitive protein localization and recruitment, and when combined with molecular 

tension sensors (discussed below) can be used to observe force-induced protein 

conformational changes. These alterations in the FAs lead to other intracellular biochemical 

signals which result in a host of cellular behaviors.

Recent studies have found that the stretching stimulation may not only strain 

mechanosensors at the FA but also at cell–cell adhesive junctions [59,60]. Beneath the 

complex mechanotransduction signaling network lies the coordinated crosstalk of integrins 

and cadherins that regulates cell signals and forces [61,62]. The force transmission can 

potentially be facilitated by the AJ protein α-catenin, which reinforces intercellular tension 

by tightening the linkage between AJs and F-actin when the cell–cell junction experiences 

strain that exposes the vinculin binding site in α-catenin [63]. It has also been reported that 

intercellular tension is increased when adherent cells are stretched, as measured by a Förster 

resonance energy transfer (FRET)-based tension sensor embedded in E-cadherin [59], 

pointing towards a direct impact of stretch stimulation at cell–cell junctions. Further, 

transcriptional activities of YAP and β-catenin upon mechanical strain function in a E-

cadherin dependent manner [64]. Besides mechanosensor molecules at junctions, 

mechanical stretch also stimulates mechanosensitive ion channels, such as piezo1 [65].
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3.1.2. Fluid flow—Fluid flow can be used to impose shear stress onto a group of cells, 

another type of mechanical stimulus. To this end, cells are cultured on the surface of a fluid 

flow channel. As fluid flows over the culture, shear stress is imposed on the cells from the 

boundary layer between the cells and the fluid. Fluid shear stress has been used in a variety 

of studies, including investigating the influence of fluid shear on proliferation of bovine 

aortic endothelial cells [66] and investigating rolling adhesion of white blood cells in shear 

flow [67]. The primary advantage of this method is the natural environment this study takes 

place in. Cells commonly interact with fluid flow in vivo, so this setup allows for a natural 

testing environment, thus fluid flow methods have been widely adopted to study the effect of 

blood flow on the physiology of endothelia [68–70].

Two types of fluid flow systems are commonly used. The first is a parallel plate system (Fig. 

3a), in which fluid flow is driven through a small rectangular chamber using a pressure 

differential, normally a syringe pump. A variety of parallel plate systems have been 

developed [71–77], and technological advances allowed for smaller microscopic parallel 

plate systems [24,25,78]. In these studies, the dimensions of the channel can be varied to 

control the flow characteristics and thus shear stress, and are kept small to ensure a low 

Reynolds number and thus laminar flow. In one study, the width of the fluid flow channel 

was varied between 0.25 and 1 mm, which changed the shear stress imposed on a culture of 

fibroblasts [79]. To generate easily-controlled uniform shear stress, a cone and plate system 

filled with cell medium is employed (Fig. 3b), in which a cone is rotated along its axis above 

the surface of a circular plate, creating a fluid flow [80–84]. The tangential speed of the cone 

increases with increased distance from the axis of rotation, but the distance between the cone 

and flat plate also increases, resulting in uniform shear stress distributions on the cell 

monolayer along the plate and the cone surface. By varying the angle of the cone and the 

speed of rotation, shear stresses of different magnitudes can be achieved. Specialized fluid 

flow profiles and flow chamber geometries are often designed to generate different temporal 

and spatial shear stress gradients [26,85].

Fluid flow is best studied in the endothelial cell system to mimic the effect of blood flow on 

the vessel wall, particularly the endothelium, aiming to understand the process of 

atherosclerosis. In general, fluid flow produces two principal stress components: the stress 

perpendicular to the vessel wall and the stress parallel to the monolayer of endothelial cells. 

The former is the tensile stress exerting a dilating force on the vessel wall. The latter, fluid 

shear stress, represents the frictional force the fluid flow exerts on the endothelial cells, and 

it activates a cascade of mechanotransduction pathways that leads to endothelial cell 

proliferation [86], reorganization of the cytoskeleton [87] and even cell death [88]. Although 

the molecular basis for mechanosensing of fluid shear stress and for cells’ ability to 

discriminate flow patterns remains to be fully revealed, studies have shown a 

mechanotransduction cascade coordinates the redistribution of forces at cell–cell junctions 

and cell–ECM adhesions [89].

The endothelial AJ contains VE-cadherin and platelet endothelial cell adhesion molecule 

(PECAM)-1, both serving as anchors to the cell cytoskeleton and sustaining tension across 

the cell–cell junction. When a monolayer of endothelial cells is subject to fluid shear stress, 

though the cell layer tends to re-align itself in the direction of the flow to minimize drag 
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resistance, the tension gradient at the apical surface of the cell membrane is eventually 

transmitted to junctional complexes. To maintain mechanical integrity, significant 

cytoskeletal remodeling takes place upon the onset of fluid flow [70]. Specifically, it has 

been reported that shear flow triggers the enhanced association of PECAM-1 with vimentin, 

which facilitates the transfer of actomyosin-generated tension within the actin network, thus 

relieving the stress at VE-cadherin adhesion complex [90,91]. This sequence of events leads 

to the rapid increase of tension at junctional PECAM-1 and a simultaneous drop of tension 

at junctional VE-cadherin, measured by FRET sensors in both adhesion molecules [90]. It is 

not surprising that PECAM-1 was identified as a mechanosensor that is associated with 

vimentin, an IF protein within endothelial cells. Similar roles for the IF-anchoring complex, 

the desmosome, are also reported in epithelial cells [92] with evidence of abundant crosstalk 

between desmosomes and AJs.

3.2. Single cell level stimulation and interrogation

Techniques used to quantify forces and stresses imposed on cells were developed to more 

fully understand biological responses to external mechanical stimuli. By studying isolated 

single cells or individual cells within a large group, complex responses to external 

mechanical stimuli can be recorded. However, these techniques offer new challenges to 

manipulate and position cells individually, with single cell control. Among the most 

common approaches are traction force microscopy (TFM), substrates with deformable 

microposts, micropipette aspiration, optical tweezers, magnetic twist cytometry (MTC), 

atomic force spectroscopy (AFM), laser ablation, and cantilever based spectroscopy. A 

description of each technique follows.

3.2.1. Traction force microscopy—TFM is the first mature technique to be employed to 

measure cell generated forces [93]. It consists of a flexible substrate containing embedded 

fluorescent beads over which adherent cells are cultured. In 2D TFM (Fig. 4a1), 

measurements of the substrate deformation together with the application of an inverse 

method using half-space elasticity solutions enables the construction of a map of the in-

plane component of the traction vectors. As such the technique is capable of measuring 

forces at the single cell level. The displacements of beads due to substrate deformation are 

calculated by means of digital image correlation techniques [94]. Common substrates used 

for TFM include polyacrylamide or silicon based gels. They are selected due to their linear 

elasticity, optical transparency, and tunability of elastic moduli through polymer chain 

crosslinking, over several orders of magnitude [95]. Knowing the elastic moduli of the 

substrates, the displacement field can be converted to a traction force field using an inverse 

method [93, 96,97]. These forces are often on the order of nanonewton or tens of 

nanonewtons. To measure both the normal and in-plane components of traction vectors, 3D 

TFM has been developed in recent years [94,98–100]. Potential sources of inaccuracy in 

computing the displacement field include polymer degradation and nonlinearity of local 

deformation among others [101].

In the study of cell–cell adhesion, TFM has shown direct evidence of crosstalk between cell–

cell and cell–ECM adhesions by indirectly quantifying cell–cell tugging forces through their 

force balance with cell–ECM traction forces [102–104]. These findings showed that 
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integrin-mediated adhesions regulate tension and composition of cell–cell junctions [105–

109]; conversely, cadherin-based cell–cell adhesions in epithelial cells modulate cell–ECM 

traction forces [102]. For example, inhibiting cell–cell adhesion in small colonies of 

keratinocytes by reducing calcium levels or genetically depleting cadherins (E-, and P-

cadherin) results in remarkably different traction force patterns. Under control conditions, 

cooperative traction forces with maximum stress are localized to the periphery of cell 

colonies, and inhibiting cell–cell adhesion results in independent and significant traction 

forces evenly distributed throughout the colonies [102]. Similar cooperative activities of 

cell–cell and cell–ECM adhesion were also observed in heart muscle cells [110]. Studies 

using TFM also revealed that the force balance as well as molecular tension in E-cadherin 

are modulated by spatial distributions of FA sites [111]. TFM was also used advantageously 

to study mechanisms of cell migration [112].

3.2.2. Substrates with flexible microposts—A simple and elegant version of TFM 

was achieved by micro-fabrication of arrays of polydimethylsiloxane (PDMS) posts using 

micromolding [113] (Fig. 4a2). When cells are cultured over the substrate, in-plane 

components of adherent forces are revealed by the deflection of the microposts. Their 

cantilever geometry and chemical composition of the PDMS determine their stiffness. 

Hence, by using optical microscopy, the deflection amplitude and direction can be measured, 

from which the forces the cell is exerting on the microposts can be identified. The primary 

advantage of this technique is the large number of independent force measurements easily 

achieved as a function of position and time, which when combined, provide a vector map of 

traction forces. One embodiment of this technique used microposts with varying stiffness by 

changing the geometry of individual microposts. This allows for control of the sensitivity of 

force measurements on certain regions of the cell [113]. Further, by combining micropost 

fabrication with microcontact printing of ECM proteins, a cell pair can be confined to a 

predefined matrix pattern [114]. Relying on the zero net-force relationship in equilibrium 

condition, the forces being transmitted through the cell pair interface can be obtained from 

the vector sum of the forces acting on each set of microposts under the cell pair. Limitations 

of this technique are the lack of quantification of the component of the force vector normal 

to the substrate and the inability to use the microposts to apply forces on cells. By 

embedding a magnetic cobalt nanowire inside a subset of the microposts, application of 

forces to cells is possible using an externally applied magnetic field [37]. This approach was 

used to study the relationship between external mechanical forces and cytoskeleton induced 

forces. The applied forces were correlated to FAs and traction forces measured on non-

magnetic posts near the magnetic posts [37]. Force stimulation has also been achieved by 

stretching the substrate containing micropost arrays [115].

In the study of cell–cell adhesion, an early attempt using micropost arrays combined with 

microcontact printing showed that actomyosin generated contractile force regulates the size 

of AJs [114], indicating that cell contractility affects not only the composition at cell–ECM 

adhesions but also the composition of cell–cell junctions. In a recent study, the 

desmosome/IF linkage at cell–cell junctions has also been shown to regulate not only 

traction forces at cell–ECM adhesions, but also modulate forces at cell–cell junctions [21]. 

Using a combined approach of micropost arrays and AFM, epithelial cells with genetic 
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mutation of a desmosome/IF linker molecule, DP, which lacks the IF-binding domain, 

exhibited significantly reduced traction forces and potentially increased tension or 

conformational changes in α-catenin of AJs [21,116]. This evidence lends support to the 

notion that abundant molecular communication exists between the two mechanically active 

junctional complexes [117]. The same study showed that the desmosome/IF linkage has a 

significant impact on global cell mechanics as well as tension within the cell–cell interface 

[21]. Different forms of DP were expressed in A431 cell lines to investigate the role of this 

linkage in regulating cell mechanics. These include: DPNTP, a truncated form of DP that 

lacks the IF binding domain, S2849G DP, which contains a serine to glycine mutation that 

enhances the desmosome/IF linkage, and wildtype DP (WtDP). Micropost arrays of different 

dimensions and elasticities were fabricated using micromolding (Fig. 5a, shown is micropost 

arrays with height of 10 μm and diameter of 2 μm and elastic modulus of 2.41 MPa). Cell–

cell adhesion forces were derived by the zero-sum force balance between the two cells (Fig. 

5b). Measurement results from the micropost arrays show that DPNTP expression results in 

a significant reduction of average intercellular forces while S2849G DP expression increases 

these forces significantly, and expression of WtDP only increases the intercellular forces 

slightly (Fig. 5c, d, e). These experimental data measured using micropost arrays suggest 

that the desmosome/IF linkage also modulates cell–ECM interactions, similar to AJs [102].

3.2.3. Micropipette aspiration—Micropipette aspiration is a simple technique in which 

a single cell is partially or completely aspirated into the tip of a micropipette (Fig. 4b1). In 

an aspiration experiment, a micropipette with inner diameter smaller than that of a 

suspended cell, equipped with a micromanipulator positioning system, is brought into 

contact with a cell while a negative pressure is applied. The negative pressure forces the 

suspended cell to attach to the tip of the micropipette as a microscope imaging system 

records cell deformation during the process [118]. This simple procedure has been used to 

investigate membrane elasticity [119,120], to quantify mechanical and material properties of 

single cells and cell nuclei [121,122], to measure molecular adhesions between pairs of cells 

[123,124], and to study mechanotransduction within single cells [125,126]. The technique 

imposes large strains on cells, and as a result is incompatible with some cell types [27]. High 

deformation gradients along the edge of the pipette and friction between the pipette surface 

and the cell membrane often impact measurement results. Mathematical models have been 

used to convert resulting strains into stresses in erythrocytes [127,128] and chondrocytes 

[129], but they have limited accuracy due to the model assumptions. Finite element analyses 

with large deformations have been performed to determine mechanical properties of 

suspended cells, such as chondrocytes, with different viscoelastic models [28,130].

To study cell–cell adhesion, two cells are brought into contact with each other using two 

micropipettes in a process called dual micropipette aspiration (DPA) (Fig. 4b2). The 

micropipettes use a slight vacuum that can securely hold the cell on the micropipette without 

significant aspiration so as to avoid large strains. Cells form a cadherin-based cell–cell 

adhesion complex after a certain contact time. While one micropipette maintains a sufficient 

amount of pressure to hold the cells in place, the pressure in the other micropipette is 

increased while the pipette retracts until the two cells are separated. The forces required to 

break the cadherin adhesions can be calculated from the aspiration pressure required to 
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separate the two cells [131,132], which is in the nanonewton range. When separating cell 

doublets with cadherin bonds, due to the short separation time of less than 1 s, the process 

can be regarded as separation of two elastic solids where the separation force depends on the 

density and dissociation rate of adhesion bonds [59]. We note that the micropipette 

aspiration technique can be easily integrated with fluorescence microscopy, which allows the 

imaging of the aggregation of adhesion molecules as well as the measurement of cell cortex 

deformation in real-time. Contact time can be controlled to ensure the maturity of the cell–

cell adhesion complexes. In this context, the technique has been used to study cadherin 

binding forces between CHO cells and red blood cells [133] and to quantify cadherin-

dependent cell–cell adhesion in E-cadherin expressing cell doublets [29].

Studies using micropipette aspiration have only been conducted on suspended cells until a 

recent report extended its utility to cells in adherent states. In the study, a single endothelial 

cell adherent on a substrate was aspirated from the apical surface using a micropipette tip, 

placed perpendicular to the substrate, while an inclined mirror was employed to measure the 

cell strains during aspiration [134]. The experiments revealed that the interaction between 

cytoskeletal actin and ECM, in adherent cells, increases the contractile forces within the 

cytoskeleton and thus the resistance to aspiration. This critical element was missing in 

studies on suspended cells. In addition, similar to micropipette aspiration in suspended cells, 

the nucleus was shown to be highly deformable under the considerably large strains resulting 

from aspiration. These experimental results were interpreted employing a viscoelastic finite 

element model.

3.2.4. Optical traps and stretchers—Optical traps use momentum conservation of 

diffracting photons to impart small forces on dielectric objects [135]. This method has been 

used to study many molecules [136], including the kinetics of RNA unfolding [137]. When 

used to study cells, dielectric microbeads are adhered to the cell and act as handles for the 

optical trap (Fig. 4c1). The adhesion strength limits the maximum force an optical trap can 

exert on a cell [30,138]. Once the microbeads are adhered to the cell, a laser is directed 

through one of the microbeads, refracting the laser. The refraction changes the momentum of 

the photons, and thus changes the momentum of the microbead, inducing a force. The 

microbead is attracted towards the focal point of the laser, and therefore the force can be 

controlled by altering how the laser is focused on the microbead [139]. For this to work, the 

refractive index of the bead must be larger than the refractive index of the medium 

surrounding the cell. Generally, this technique is used to apply static loading to cells, but can 

also be used for cyclic loading, using an acousto-optic modulator [140]. The two main 

advantages of these techniques are high force resolution and lack of physical contact 

between the actuation and the cell. Using this technique, sub pN forces were achieved, and 

cells were studied in their natural environments as they do not need to be physically attached 

to an instrument. However, the maximum achievable force is limited to a few hundred pN, as 

high laser power may impart radiation damage onto the cell.

A study that took full advantage of the resolution achieved with optical traps examined the 

impact malaria has on the mechanical properties of diseased red blood cells [141]. Healthy 

red blood cells [138] and infected blood cells [31,142] were stretched using an optical trap 

to quantify their elastic moduli. The diseased cells were tested in various stages of the 
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infection, revealing the shear modulus steadily increased throughout the duration of the 

infection, increasing by about an order of magnitude at the final stage of the disease.

In the study of cell adhesion, optically trapped beads, a few micrometers in diameter, were 

tethered to matrix proteins such as functional peptides [143] or fibronectins [144] to measure 

adhesion forces (Fig. 4c2). The technique enabled real-time monitoring of traction forces, 

during the formation of cell adhesion sites, functioning as a high resolution (~pN) force 

sensor. However, due to the complexity of the optical setup, only a few beads could be 

tracked simultaneously, limiting its spatial resolution. The technique has also been deployed 

to investigate the interactions of AJs with filamentous actin (F-actin) [145]. To this end, two 

optical trapped beads attach to both ends of a single actin filament suspended above a 

purified cadherin–catenin complex. The objective was to mimic the parallel spatial 

arrangement of F-actin filaments with the cell membrane at the cell–cell junction. To apply 

tension, the cadherin–catenin complex was anchored onto a microsphere attached to a 

movable stage. During the cyclic motion of the stage, when the immobilized complex bound 

to the suspended filament, the interaction force can be obtained from the optically-displaced 

beads. The study revealed that α-catenin is required to form the AJ/actin filament tether and 

that the bond between the complex and the actin filament is tension-enhanced and catch-

bond like.

A variation on optical traps, known as optical stretchers, uses divergent lasers that interact 

directly with the cell without the need for microbead handles [146–149]. This technique was 

most recently employed to probe the mechanics of cell–cell interfaces [149]. In this study, 

mature cell–cell junctions of a drosophila embryo were interrogated by optically imposing a 

deformation (<1 μm) on the cell–cell interface. Observation of the retraction of the cell–cell 

junction to the original shape and the restoration of force balance provides information about 

the mechanics of cell–cell junctions during early tissue morphogenesis. The study shows 

that tension at cell–cell junctions, on the order of 100 pN, can equilibrate over a few seconds 

and that the time-dependent properties of the junction can be reproduced by a simple 

viscoelastic model.

3.2.5. Magnetic beads—Magnetic beads can be used as handles to apply forces to a cell, 

in a process often referred to as magnetic twisting cytometry (MTC) (Fig. 4d1). The beads 

are coated with a group of molecules that allow them to bind to specific cell surface 

receptors [23]. Once they are attached, they can be manipulated through control of an 

external magnetic field. This method was developed in 1950 [150] and has been used in a 

variety of studies, including applying cyclic loadings to cells [33,151–154]. The technique 

has been mostly applied to investigate the mechanical properties, especially viscoelasticity, 

of cells [151], but was also applied to fundamental studies of the role of membrane forces in 

gene regulation [155]. Two main advantages of MTC are the ability to apply torque to cells 

and the ability to easily apply cyclic loadings through control of the magnetic field. 

However, due to unfavorable scaling of magnetic forces with size, applying large forces with 

this technique requires large beads relative to cell size [156].

Similar to the optical trapping method, MTC can apply and measure forces with pN 

resolution. To this end, magnetic beads are normally coated with RGD sequences that link 
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them to integrin receptors, which led to the discovery of integrin-based mechanotransduction 

[153]. Recent studies on mechanotransduction at cell–cell junctions have revealed that 

applied forces at E-cadherin have profound impact on cell contractility and cell mechanics 

[157]. A combination of MTC for force loading at the cell–cell adhesion complex and 

traction force microscopy (TFM) to quantify traction forces at cell–ECM interactions was 

employed (Fig. 4d2). Beads coated with E-cadherin ligands were employed to induce an 

oscillating shear stress (~10 Pa) through modulation of the applied magnetic field. The study 

revealed that shear stress induced at cell–cell junctions can trigger a significant increase in 

traction forces. This also demonstrates a new mechanotransduction pathway from cell–cell 

junctions to FAs, potentially through EGFR-PI3K mediated pathways. It is yet to be 

determined the extent to which the α-catenin-actin filament linkages participate in the force 

sensing and transducing process, despite the many previous reports confirming their tension-

maintaining and conformation-altering roles [145, 158].

3.2.6. Atomic force microscopy—Atomic force microscopy (AFM) is a technique that 

was originally developed to map surfaces of any material with nanometer resolution. A 

microfabricated silicon cantilever beam, having a sharp tip at its end, is brought into contact 

with a surface. As the tip interacts with the surface, the cantilever beam bends. By tracking 

its deflection, using a laser beam deflected off the back of the cantilever beam, the tip–

surface interaction force can be measured when the cantilever stiffness is known. The 

technique has sub-pN force resolution and sub-nm displacement resolution, but has a limited 

maximum force and displacement. It has been adopted to the study of cell mechanics by 

relating the amount the cantilever beam deflects to the force the probe exerts. AFM has been 

successfully employed to study cell elastic [159–163] and viscoelastic properties [164], as 

well as nuclei stiffness [165] (Fig. 4e1). In addition to compressive forces, AFM can also be 

used to apply tensile forces to a cell. One way this can be done is by culturing cells directly 

on the AFM tip. This allows for easy manipulation of cells, and has been used to study cell–

cell and cell-substrate interactions [166]. In addition, the AFM tip can be functionalized to 

bind to cell surface receptors in a technique widely known as single molecule force 

spectroscopy (SMFS) (Fig. 4e2). Once functionalized, the probe can be retracted to apply 

tensile forces and unwind or break molecular bonds [167]. SMFS has been used extensively 

to study binding affinities for a host of molecules, including the unbinding of DNA protein 

pairs [168,169].

In the study of cell–cell adhesion, AFM has been used in the context of single cell force 

spectroscopy (SCFS) [170,171] (Fig. 4e3). The technique is similar in principle with 

micropipette based cell–cell adhesion studies using DPA, where two cells are brought into 

contact and pulled apart to quantify their interaction. Compared with the DPA method, 

SCFS offers higher resolution (pN compared to nN for DPA) and less native strain to the 

cells before contact. In SCFS adhesion measurements, a living cell is first attached onto a 

tip-less AFM cantilever, normally by means of matrix protein coating, and the cell is brought 

into contact with another cell on the substrate by lowering the cantilever using a z-piezo 

stage. During the retraction phase, the interactions can be measured by recording the 

cantilever deflection. The sensitivity in force measurement and the fine position control, by 

the z-piezo stage, enables quantification of subtle cell–cell interactions during the initial 
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phase of adhesion. These forces are often retraction rate-dependent and dwelling time-

dependent [170,172]. A prolonged dwelling time often leads to the study of cooperative 

binding. SCFS studies have led to the conclusion that levels of E-cadherin determine the 

adhesion strength between different types of zebrafish progenitor cells during development 

[173]. Destructive methods are also used to probe cellular responses including the use of 

AFM probes [162,163] or laser pulses [174–176] to dissect cytoskeleton components.

Performed on the center of individual cells, AFM nanomechanical studies can reveal subtle 

changes in global cell mechanics (illustrated Fig. 6a). AFM studies on A431 cells expressing 

various forms of DP have shown that removing the desmosome/IF linkage reduces cellular 

stiffness significantly compared with controls, conversely, enhancing the linkage increases 

cellular stiffness. These results suggest that changes at the cell–cell adhesion complex have a 

major impact on global cell mechanics. In addition, the stiffness changes observed on cells 

with DP mutations can be abrogated by depolymerizing actin filaments, indicating a 

potential crosstalk between the desmosome/IF and AJ/actin filament networks [21]. 

Furthermore, considering the significant difference in the mechanical properties of the 

cytoskeleton and the cytosol, AFM images obtained by applying a small force to the cell can 

reveal the cytoskeleton structures at the cell–cell adhesion junction as shown in Fig. 6b. The 

imaged structure can be compared to a correlative immunofluorescence image to identify the 

type of filaments (similar to the labeling of IF cytoskeleton in Fig. 6c). Mechanical 

measurements can be performed on individual filaments to reveal their tensional states when 

the junction complexes are modulated. These mechanical characterizations will inform our 

understanding from a global cell mechanics perspective, where the cell cytoskeleton is 

considered as a tensegrity structure [177].

Cell–cell adhesion studies also take advantage of the binding force measurement capability 

of AFM. SMFS experiments on the desmosomal cadherin, Dsg3, have revealed the 

distinctive binding affinities of Dsg3 molecules at different regions of the cell surface [178]. 

Using a Dsg3 functionalized AFM probe, the study showed that homophilic Dsg3 binding 

forces are stronger at cell–cell contacts than at other cell surface areas. Further, this binding 

event can be effectively blocked by calcium depletion and Dsg3 antibodies [178]. In a 

separate study, the same group identified that inhibition of Dsg3 binding, which occurs in 

the autoimmune disease pemphigus vulgaris, does not lead to cell–cell adhesion loss, rather 

it alters downstream signaling events that may contribute to that effect, such as p38 mitogen-

activated protein kinase (p38 MAPK) [179]. Studies using SMFS also revealed the 

mechanisms of bond formation between desmosomal cadherins: Dsc forms calcium-

dependent homophilic bonds and Dsg forms calcium-independent heterophilic bonds with 

Dsc. [180]. Similar approaches have been taken in the study of E-cadherin based cell–cell 

adhesions, and the mechanism of catch bond formation between E-cadherin molecules has 

been demonstrated [181,182].

3.2.7. Laser ablation—The contractile forces present within cell–cell contacts of living 

cells can be directly measured using laser ablation [183]. The cell cortex at sites of cell–cell 

contact is physically cut using a high-power laser (e.g. two-photon laser). A fiduciary 

fluorescently tagged membrane marker is used to track the displacement of the vertices at 

either side of an ablated cell–cell junction. The rate of vertex recoil can then be used to 
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extract force-related parameters including the contractile force that was present within the 

junction as well as the ratio between junction elasticity and the viscosity of the cytoplasm 

[183]. Tension within cell–cell junctions can then be compared across experimental 

conditions by comparing initial recoil velocities. This approach has been used to determine 

the contributions of Src kinase [184], actin regulating proteins like N-WASP [185] and the 

Rho guanosine nucleotide exchange factor Ect2 [186], and myosin II [187] to the generation 

of tension at sites of cell–cell contact. Finally, this method is capable of measuring cell–cell 

forces both in traditional cell culture models as well as in vivo models like zebrafish [188].

4. MEMS and beyond for parallel stimulation and interrogation

The aforementioned techniques, while effective, present some limitations in terms of force 

and displacement resolutions, and imaging modalities. To overcome such limitations, 

researchers resorted to the design flexibility offered by MEMS through creation of 

specialized platforms for cell–cell adhesion studies. Parallel stimulation and measurement of 

forces were achieved by employing compliant mechanisms embodied in various 

configurations [189].

4.1. Moveable structures

In a moveable platform MEMS device, a cell is adhered to a platform that is split into two or 

more parts. The cell is adhered to the platform while the parts are together, and then the 

parts of the platform are separated using an external actuator, e.g., piezoelectric actuator, and 

mechanical linkages. As the parts of the platform separate, the cell is stretched, and the 

degree to which the cell is deformed can be controlled by the separation distance between 

the parts of the platform. Two variations of this technique have been implemented, a uniaxial 

puller and a biaxial puller.

An example uniaxial puller consists of two platforms, one of which is fixed while the other 

is moveable (Fig. 7a). The moveable platform is attached to an external piezoelectric 

actuator, which can control the displacement of the platform. In one study, a uniaxial puller 

was used to study mechanical properties of hydrated collagen fibrils [190]. An electrostatic 

comb drive actuator was employed to actuate one of the platforms, while the other was held 

rigidly in place. The main advantages of using an electrostatic comb-drive actuator include 

low power consumption using moderate driving voltages, and high speed and accuracy. 

Also, use of an electrostatic comb drive actuator allowed for cyclic loading of the cell. A 

biaxial puller was developed that used an electrostatic comb-drive actuator and a cleverly 

designed kinematic linkage that allowed for controlled actuation of four segments of a 

platform at the same time [36] (Fig. 7b). In this setup, one part of the stage was fixed, while 

the other three were connected to a kinematic linkage and an electrostatic actuator. When the 

actuator moves, the linkage causes the three mobile portions of the platform to move in 

mutually orthogonal directions from each other. If small displacements are assumed, the 

relative motion away from each other is at the same speed. This results in uniform biaxial 

strain on the cell. It is worth mentioning that electrostatic actuation is not shown in the 

diagrams of Fig. 7. Electrostatic actuation in a liquid environment for biological applications 

has been developed using a differential actuation design [191]. The system is operated at 
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high frequencies to compensate for the attenuation due to impedance loss in conductive 

media [192]. In sum, the MEMS-based stretching technique has not been reliably deployed 

to study cell–cell adhesion mainly because of the difficulty in aligning the cell doublets in a 

spatial arrangement where the strain direction is perpendicular to the cell–cell junction. In 

addition, the difficulty also lies in the compatibility of MEMS materials for cell attachment 

and growth.

To investigate cell–cell junctions and meet the challenges mentioned, we fabricated and 

integrated a microdevice capable of parallel stretching and sensing of forces (Fig. 8). The 

device is floating above a window through a silicon wafer and consists of folded beams 

(load sensor) and shuttles to support rafts on which cell pairs are cultured. It is designed to 

apply tension to a pair of cells placed between the two shuttles. The stretching is achieved by 

means of an external manipulator and a metallic needle that interfaces with the device 

through an aperture made on the right shuttle (Fig. 8a). Considering the large deformability 

of cells and the high load resolution needed to capture breaking of desmosome cell–cell 

adhesions, we use a set of folded beams over a length of 500 μm possessing a stiffness of 12 

pN/nm, which allows measurement of forces as low as 250 pN using digital image 

correlation (DIC). This force is equivalent to the strength of ~3–6 cadherin bonds [193]. DIC 

enables correlation of features in a pair of images using software analysis. A mathematical 

correlation algorithm is applied to track the position of features (here we track features 

included in the surface of the shuttles shown in Fig. 8b) from one image to the next relative 

to an initial reference image. The accuracy of this method is approximately ± 0.1 pixels 

(resolutions of 20 nm have been achieved [194] when a 100X objective, 1.40 N.A., is used).

To contain the live cells, a microfabricated parylene C raft in the shape of a bowtie, which is 

patterned with extracellular matrix (ECM) proteins, is placed on the device in a gap between 

the shuttles (Fig. 8c–e). The raft is fabricated by patterning the deposited parylene C layer 

on top of a sacrificial layer, PNIPA. The patterned raft can be released by increasing the 

media temperature to above 37 degrees, which dissolves the PNIPA (Fig. 8f). Cells are then 

plated over the microdevice platform, and a pair of cells is placed across the two half rafts 

using micropipette aspiration. The cell pair is confined in position by the physical well in the 

parylene layer, which is approximately 8 μm in depth. The shuttles bear an opening that 

corresponds to the location of the cell pair on the rafts such that the cells can be observed by 

an inverted fluorescence microscope. Simultaneous imaging by confocal fluorescence 

microscopy would enable tracking of the evolution of intercellular adhesions and 

cytoskeletal networks.

4.2. 3D Nanofabrication

Advances in nanofabrication techniques promise to enable unique cell adhesion studies. For 

example, two-photon polymerization (TPP) has enabled the fabrication of devices at 

nanoscale and more importantly using biocompatible fabrication materials [195]. A new 

class of micro-scaffold with nanometer scale features has been developed for cell attachment 

and growth [196–199], for force measurement from cell adhesion induced interactions [200], 

and for stimulation of FAs [201]. This method is still in its early stages, but it is very 
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promising because it offers biocompatibility and the potential to probe cells within a 3D 

environment.

5. Sensing intra -cellular forces with FRET imaging

To gain insights into the conformational changes of mechanosensor molecules and to reveal 

the mechanisms of mechanosensing, genetically encoded tension sensors were developed to 

introduce fluorophores with compatible emission/absorption spectra [202–205]. FRET is 

based on the nonradiative energy transfer between one fluorophore, the donor, and another 

fluorophore, the acceptor. The efficiency of this transfer depends highly on the relative 

distance between the fluorophores. The Förster distance, a characteristic length at which 

efficiency of energy transfer equals 50%, is a few nanometers [206]. Thus, FRET works with 

a length scale that is comparable with conformation changes of molecules within cells. 

Tremendous progress has been made in using FRET for the study of cell generated forces 

and mechanosensing of external forces. There have been reports of FRET measurements for 

detecting force-activated RhoA [207,208], Rac [209], Focal adhesion kinase (FAK) [210] 

and Src kinase [211].

Cell–cell junction molecules, E-cadherin [59,111,212], VE-cadherin [213], PECAM-1 [90], 

as well as linker molecules α-catenin [214] have been reported as effective mechanosensors. 

FRET sensors are most effective when used in parallel with other mechanical stimulation 

techniques, such as MTC [157,215]. Mechanical stress or strain applied to cell–cell 

junctions pose a conformational change to mechanosensors at the junction, and this change 

and the resulting tension within the sensor can be revealed qualitatively, possibly 

quantitatively with calibration [216], by monitoring the FRET ratio. Surprisingly, use of an 

E-cadherin tension sensor demonstrated that membrane-associated E-cadherin is under 

constitutive actomyosin generated tension, irrespective of whether or not it is present in cell–

cell contacts; however, E-cadherin tension is increased at cell–cell contacts when adhering 

cells are stretched [59]. Moreover, introducing an α-catenin FRET sensor into AJs revealed 

a rapid and reversible conformational change when activated by mechanical strain. Further, 

it confirms that force dependent conformational change is followed by recruitment of 

vinculin to its α-catenin binding site [215]. An α-actinin FRET sensor was used to 

demonstrate that fluid shear stresses are transmitted to AJs through force redistribution 

within cytoskeletal binding proteins, and changes in cytoskeletal tension and reorganization 

are upstream in the response of cells to flow [217]. Finally, other types of cell–cell junctions, 

including tight junctions, can affect the forces within AJs. Depletion of the tight junction 

component ZO1 in endothelial cells resulted in a redistribution of actomyosin and a decrease 

in AJ tension as assessed using a VE-cadherin tension sensor [218].

6. Outlook

This review covers the most widely used techniques in stimulating and probing cell 

generated forces, focusing on cell–cell adhesion studies. While effective, these techniques 

are mostly restricted to in vitro studies, and it is still rather difficult to probe physical 

interactions in vivo. These techniques generally require specialized instrumentation and 

detailed calibration to realize desirable signal-to-noise ratio and resolution. Thus, 
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improvements should be made to facilitate the adoption of these techniques in routine 

laboratory protocols. Researchers need also to consider a variety of issues in deciding which 

method to adopt. Besides displacement resolution (micrometer or nanometer) and force 

resolution (piconewton or nanonewton), the in vivo or in vitro observation conditions, the 

dimensionality of measurements (2D or 3D), the temporal resolution of the 

mechanotransduction pathways are all factors that influence inter- and intra-cellular 

processes. Specifically, for cell–cell adhesion studies, it is not yet possible to develop novel 

platforms for applying precise external load (force or strain) to a single cell–cell junction 

while simultaneously using confocal microscopy to measure its response. This capability 

would enhance our understanding of how mechanosensing modules in intercellular junctions 

drive cytoskeletal remodeling and potentially transcriptional responses affecting tissue 

differentiation and function. BioMEMS holds great potential to tackle these issues through 

innovative designs and advances in materials and fabrication processes. In this respect, it 

would be ideal to combine bioMEMS systems with well characterized FRET sensors to 

enable the application and measurement of external forces while unraveling the intracellular 

processes.
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Fig. 1. 
Cell–cell adhesion in epithelial cells. a. Adherens junctions (AJs) and desmosomes are 

cadherin-based intercellular junctions, which, along with adhesions at the cell–ECM (HD: 

hemidesmosome; FA: focal adhesion), are responsible for maintenance of the epithelial 

phenotype. b. The major components of the desmosome junction are desmocollin (Dsc), 

desmoglein (Dsg), plakoglobin (PG), plakophilin (PKP), and desmoplakin (DP), which 

connect to intermediate filaments (IFs). c. The major components of classical AJs are the 

transmembrane protein E-cadherin, p120, α-, and β-catenin.
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Fig. 2. 
Mechanical stretching of a monolayer of cells. a. Uniaxial stretching; b: Biaxial stretching; 

c: Substrate flection; d: Stretching with curved template; e: Equiaxial stretching with 

vacuum suction.
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Fig. 3. 
Fluid shear stimulation of a monolayer of cells. a. Fluid shear in a two-plate based flow 

chamber; b. Fluid shear with a plate and rotating cone system.
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Fig. 4. 
Cell force interrogation techniques and their use in cell–cell adhesion studies. a. TFM (a1) 

and micropost arrays (a2); b. Micropipette aspiration for single cells (b1) and cell–cell 

adhesion (b2); c. Optical trapping and stretcher for single cells (c1) and for cell–cell 

adhesion (c2); d. MTC for single cells (d1) and for cell–cell adhesion (d2); e. AFM based 

single mechanical interrogation (e1), single molecule force spectroscopy (SMFS) (e2) and 

single cell force spectroscopy (SCFS) for cell–cell adhesion (e3).
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Fig. 5. 
Micropost arrays reveal that desmosome/IF linkage regulates cell–cell adhesion forces. a. 

Micropost arrays 10 μm in height and 2 μm in diameter are fabricated using micromolding 

of PDMS. b. Force balance established between cell pairs are used to calculate cell–cell 

tugging force. c, d, e. Distribution of intercellular forces in nN as measured by micropost 

arrays for DPNTP, S2849G DP and WtDP, respectively. c, d and e are recreated from Fig. 2 

in [21], reprinted with permission.).
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Fig. 6. 
AFM imaging reveals cytoskeletal bundles. a. AFM nanomechanical measurements reveal 

global cell mechanics. b. AFM image is scanned at the cell–cell junction. Scale bar: 2 μm. c. 

To identify the filaments in the AFM image, an immunofluorescence image is taken at the 

junction to visualize IF (Red: IF; Blue: plakoglobin; Green: DP). Scale bar: 5 μm. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 7. 
MEMS based single cell interrogation and stimulation systems. a. Uniaxial single cell 

stretching; b: Biaxial single cell stretching. (Reprinted with permission from Fig. 4 of 

[189].).
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Fig. 8. 
Parallel stimulation and interrogation of cell–cell adhesion with bioMEMS system. a. SEM 

image of the microfabricated device, composed of folded beams (load sensor), and shuttles 

to mount the rafts in which cells are cultured (b). c–e. The parylene C rafts are successfully 

released from the substrate by dissolving a sacrificial layer (PNIPA) in 37 °C water, 

manipulated using a micropipette and positioned on a device. f. Raft fabrication and release. 

Top view of the rafts with stamped ECM proteins.

Yang et al. Page 36

Extreme Mech Lett. Author manuscript; available in PMC 2018 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 37

Table 1

Techniques to study cell–cell adhesion with resolutions in force and displacements.

Technique Force/Stress range (Resolution) Displacement range (Resolution)

Deformable Substrates 50–1000 Pa [22] 0–100 μm [22] 0%–70% [23] (0.04%)

Fluid Flow 0–22 Pa [24,25](0.05 Pa) 0–50% [26]

Micropipette Aspiration 0–700 Pa (0.1 Pa) [27,28] 0–100 μm (25 nm) [29]

Optical Traps/stretcher 0–300 pN (5 pN) [30,31] 0–5 μm (1 nm) [32]

Magnetic Beads 0–120 pN (1 pN) [33] N/A

Atomic Force Microscopy 0–20 nN (1 pN) [34] 0–100 μm (1–5 nm) [34]

Uniaxial Puller 0–1.5 μN (1 nN) [35] 0–100 μm (40 nm) [35]

Biaxial Puller 0–60 μN (1 nN) [36] 0–3.4 μm (10 nm) [36]

Microposts 0–100 nN (10 pN) [37] 0–1000 nm (10 nm) [37]

Cantilever Beam Deflection 0–1 μN (50 pN) [38] 0–50 μm (10 nm) [38]
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