658 research outputs found
Amplification of simian retroviral sequences from human recipients of baboon liver transplants
Investigations into the use of baboons as organ donors for human transplant recipients, a procedure called xenotransplantation, have raised the specter of transmitting baboon viruses to humans and possibly establishing new human infectious diseases. Retrospective analysis of tissues from two human transplant recipients with end-stage hepatic disease who died 70 and 27 days after the transplantation of baboon livers revealed the presence of two simian retroviruses of baboon origin, simian foamy virus (SFV) and baboon endogenous virus (BaEV), in multiple tissue compartments. The presence of baboon mitochondrial DNA was also detected in these same tissues, suggesting that xenogeneic 'passenger leukocytes' harboring latent or active viral infections had migrated from the xenografts to distant sites within the human recipients. The persistence of SFV and BaEV in human recipients throughout the posttransplant period underscores the potential infectious risks associated with xenotransplantation
ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1<z<4
We investigate the properties of galaxies as they shut off star formation
over the 4 billion years surrounding peak cosmic star formation. To do this we
categorize galaxies from into groups based on the shape
of their spectral energy distributions (SEDs) and build composite SEDs with
resolution. These composite SEDs show a variety of spectral shapes
and also show trends in parameters such as color, mass, star formation rate,
and emission line equivalent width. Using emission line equivalent widths and
strength of the 4000\AA\ break, , we categorize the composite SEDs
into five classes: extreme emission line, star-forming, transitioning,
post-starburst, and quiescent galaxies. The transitioning population of
galaxies show modest H emission (\AA) compared to
more typical star-forming composite SEDs at
(\AA). Together with their smaller sizes (3 kpc vs. 4 kpc)
and higher S\'ersic indices (2.7 vs. 1.5), this indicates that morphological
changes initiate before the cessation of star formation. The transitional group
shows a strong increase of over one dex in number density from to
, similar to the growth in the quiescent population, while
post-starburst galaxies become rarer at . We calculate average
quenching timescales of 1.6 Gyr at and 0.9 Gyr at and
conclude that a fast quenching mechanism producing post-starbursts dominated
the quenching of galaxies at early times, while a slower process has become
more common since .Comment: Accepted for publication in The Astrophysical Journa
Age-Related Decline in Reproductive Sensitivity to Inhibition by Short Photoperiod in Peromyscus Leucopus
Seasonal environments favor the timing, of reproduction to match seasons when Successful reproduction is most likely. Most species of temperate zone mammals suppress reproduction in winter using changes in day length as a cue. In many species, individuals vary genetically in how strongly they respond to these seasonal cues. Individuals also may modify their response to day length depending upon other factors, including their age. Age-specific changes might occur because young, peripubertal rodents are more strongly affected by harsh conditions than adults, and therefore might be more sensitive to inhibitory photoperiods. We tested the hypothesis that genetic variation in responses to photoperiod persists as individuals age. Young males from a captive population of white-footed mice (Peromyscus leucopus) that is genetically variable for reproductive inhibition by short day length (SD) were tested for photoperiod responses. Mice were placed in SD within 3 days after birth, tested at age 70 days, allowed to mature for at least 18 weeks at long day length, and then tested again as adults aged \u3e= 34 weeks. Young males were more likely to be strongly reproductively Suppressed by SD than adults, indicating that age-specific changes in reproductive strategy occur in this Population. However, males that were reproductively photoresponsive when young also were more likely to be reproductively photoresponsive as adults. Thus, genetic tendency for reproductive sensitivity to photoperiod is a trait retained from puberty to adulthood, but attenuates with age
Solid deuterium surface degradation at ultracold neutron sources
Solid deuterium (sD_2) is used as an efficient converter to produce ultracold
neutrons (UCN). It is known that the sD_2 must be sufficiently cold, of high
purity and mostly in its ortho-state in order to guarantee long lifetimes of
UCN in the solid from which they are extracted into vacuum. Also the UCN
transparency of the bulk sD_2 material must be high because crystal
inhomogeneities limit the mean free path for elastic scattering and reduce the
extraction efficiency. Observations at the UCN sources at Paul Scherrer
Institute and at Los Alamos National Laboratory consistently show a decrease of
the UCN yield with time of operation after initial preparation or later
treatment (`conditioning') of the sD_2. We show that, in addition to the
quality of the bulk sD_2, the quality of its surface is essential. Our
observations and simulations support the view that the surface is deteriorating
due to a build-up of D_2 frost-layers under pulsed operation which leads to
strong albedo reflections of UCN and subsequent loss. We report results of UCN
yield measurements, temperature and pressure behavior of deuterium during
source operation and conditioning, and UCN transport simulations. This,
together with optical observations of sD_2 frost formation on initially
transparent sD_2 in offline studies with pulsed heat input at the North
Carolina State University UCN source results in a consistent description of the
UCN yield decrease.Comment: 15 pages, 22 figures, accepted by EPJ-
Measurement of the half-life of the T= mirror decay of Ne and its implication on physics beyond the standard model
The superallowed mixed mirror decay
of Ne to F is excellently suited for high precision studies of
the weak interaction. However, there is some disagreement on the value of the
half-life. In a new measurement we have determined this quantity to be
= s, which differs
from the previous world average by 3 standard deviations. The impact of this
measurement on limits for physics beyond the standard model such as the
presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl
Unconventional one-magnon scattering resistivity in half metals
Low-temperature resistivity of half-metals is investigated. To date it has
been discussed that the one-magnon scattering process in half-metals is
irrelevant for low-temperature resistivity, due to the fully spin-polarized
electronic structure at the ground state. If one takes into account the
non-rigid-band behavior of the minority band due to spin fluctuations at finite
temperatures, however, the unconventional one-magnon scattering process is
shown to be most relevant and gives T^3 dependence in resistivity. This
behavior may be used as a crucial test in the search for half-metallic
materials which are potentially important for applications. Comparison with
resistivity data of
La_1-x Sr_x MnO_3 as candidates for half-metals shows good agreement.Comment: 4 pages, including 5 eps figures. To be published in J. Phys. Soc.
Jpn. vol. 69 No. 7 (2000
emiT: an apparatus to test time reversal invariance in polarized neutron decay
We describe an apparatus used to measure the triple-correlation term (\D
\hat{\sigma}_n\cdot p_e\times p_\nu) in the beta-decay of polarized neutrons.
The \D-coefficient is sensitive to possible violations of time reversal
invariance. The detector has an octagonal symmetry that optimizes
electron-proton coincidence rates and reduces systematic effects. A beam of
longitudinally polarized cold neutrons passes through the detector chamber,
where a small fraction beta-decay. The final-state protons are accelerated and
focused onto arrays of cooled semiconductor diodes, while the coincident
electrons are detected using panels of plastic scintillator. Details regarding
the design and performance of the proton detectors, beta detectors and the
electronics used in the data collection system are presented. The neutron beam
characteristics, the spin-transport magnetic fields, and polarization
measurements are also described.Comment: 15 pages, 13 figure
Enhancement of the electronic contribution to the low temperature specific heat of Fe/Cr magnetic multilayer
We measured the low temperature specific heat of a sputtered
magnetic multilayer, as well as separate
thick Fe and Cr films. Magnetoresistance and magnetization
measurements on the multilayer demonstrated antiparallel coupling between the
Fe layers. Using microcalorimeters made in our group, we measured the specific
heat for and in magnetic fields up to for the multilayer. The
low temperature electronic specific heat coefficient of the multilayer in the
temperature range is . This is
significantly larger than that measured for the Fe or Cr films (5.4 and respectively). No magnetic field dependence of was
observed up to . These results can be explained by a softening of the
phonon modes observed in the same data and the presence of an Fe-Cr alloy phase
at the interfaces.Comment: 20 pages, 5 figure
CSRP3 mediates polyphenols-induced cardioprotection in hypertension
Berries contain bioactive polyphenols, whose capacity to prevent cardiovascular diseases has been established recently in animal models as well in human clinical trials. However, cellular processes and molecular targets of berries polyphenols remain to be identified. The capacity of a polyphenol-enriched diet (i.e., blueberries, blackberries, raspberries, strawberry tree fruits and Portuguese crowberries berries mixture) to promote animal survival and protect cardiovascular function from salt-induced hypertension was evaluated in a chronic salt-sensitive Dahl rat model. The daily consumption of berries improved survival of Dahl/salt-sensitive rats submitted to high-salt diet and normalized their body weight, renal function and blood pressure. In addition, a prophylactic effect was observed at the level of cardiac hypertrophy and dysfunction, tissue cohesion and cardiomyocyte hypertrophy. Berries also protected the aorta from fibrosis and modulated the expression of aquaporin-1, a channel involved in endothelial water and nitric oxide permeability. Left ventricle proteomics analysis led to the identification of berries and salt metabolites targets, including cystein and glycin-rich protein 3 (CSRP3), a protein involved in myocyte cytoarchitecture. In neonatal rat ventricular cardiomyocytes, CSRP3 was validated as a target of a berries-derived polyphenol metabolite, 4-methylcatechol sulfate, at micromolar concentrations, mimicking physiological conditions of human plasma circulation. Accordingly, siRNA silencing of CSRP3 and 4-methylcatechol sulfate pretreatment reversed cardiomyocyte hypertrophy and CSRP3 overexpression induced by phenylephrine. Our systemic study clearly supports the modulation of CSRP3 by a polyphenol-rich berries diet as an efficient cardioprotective strategy in hypertension-induced heart failure
- …