926 research outputs found

    Stellar Winds on the Main-Sequence II: the Evolution of Rotation and Winds

    Full text link
    Aims: We study the evolution of stellar rotation and wind properties for low-mass main-sequence stars. Our aim is to use rotational evolution models to constrain the mass loss rates in stellar winds and to predict how their properties evolve with time on the main-sequence. Methods: We construct a rotational evolution model that is driven by observed rotational distributions of young stellar clusters. Fitting the free parameters in our model allows us to predict how wind mass loss rate depends on stellar mass, radius, and rotation. We couple the results to the wind model developed in Paper I of this series to predict how wind properties evolve on the main-sequence. Results: We estimate that wind mass loss rate scales with stellar parameters as M˙R2Ω1.33M3.36\dot{M}_\star \propto R_\star^2 \Omega_\star^{1.33} M_\star^{-3.36}. We estimate that at young ages, the solar wind likely had a mass loss rate that is an order of magnitude higher than that of the current solar wind. This leads to the wind having a higher density at younger ages; however, the magnitude of this change depends strongly on how we scale wind temperature. Due to the spread in rotation rates, young stars show a large range of wind properties at a given age. This spread in wind properties disappears as the stars age. Conclusions: There is a large uncertainty in our knowledge of the evolution of stellar winds on the main-sequence, due both to our lack of knowledge of stellar winds and the large spread in rotation rates at young ages. Given the sensitivity of planetary atmospheres to stellar wind and radiation conditions, these uncertainties can be significant for our understanding of the evolution of planetary environments.Comment: 26 pages, 14 figures, 2 tables, to be published in A&

    Stellar Winds on the Main-Sequence I: Wind Model

    Full text link
    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run a grid of 1200 wind models to derive relations for the wind properties as a function of stellar mass, radius, and wind temperature. Using these results, we explore how wind properties depend on stellar mass and rotation. Conclusions: Based on our two assumptions about the scaling of the wind temperature, we argue that there is still significant uncertainty in how these properties should be determined. Resolution of this uncertainty will probably require both the application of solar wind physics to other stars and detailed observational constraints on the properties of stellar winds. In the final section of this paper, we give step by step instructions for how to apply our results to calculate the stellar wind conditions far from the stellar surface.Comment: 24 pages, 13 figures, 2 tables, Accepted for publication in A&

    Towards a unified model of stellar rotation II: Model-dependent characteristics of stellar populations

    Full text link
    Rotation has a number of important effects on the evolution of stars. Apart from structural changes because of the centrifugal force, turbulent mixing and meridional circulation caused by rotation can dramatically affect a star's chemical evolution. This leads to changes in the surface temperature and luminosity as well as modifying its lifetime. Observationally rotation decreases the surface gravity, causes enhanced mass loss and leads to surface abundance anomalies of various chemical isotopes. The replication of these physical effects with simple stellar evolution models is very difficult and has resulted in the use of numerous different formulations to describe the physics. Using stellar evolution calculations based on several physical models we discuss the features of the resulting simulated stellar populations which can help to distinguish between the models.Comment: 14 pages, 13 figures. Accepted for publication in MNRA

    Broad-band photometric colors and effective temperature calibrations for late-type giants. II. Z<0.02

    Full text link
    (Abridged) We investigate the effects of metallicity on the broad-band photometric colors of late-type giants, and make a comparison of synthetic colors with observed photometric properties of late-type giants over a wide range of effective temperatures (T_eff=3500-4800 K) and gravities (log g=0.0-2.5), at [M/H]=-1.0 and -2.0. The influence of metallicity on the synthetic photometric colors is generally small at effective temperatures above \~3800 K, but the effects grow larger at lower T_eff, due to the changing efficiency of molecule formation which reduces molecular opacities at lower [M/H]. To make a detailed comparison of the synthetic and observed photometric colors of late type giants in the T_eff--color and color--color planes, we derive a set of new T_eff--log g--color relations based on synthetic photometric colors, at [M/H]=-0.5, -1.0, -1.5, and -2.0. While differences between the new T_eff--color relations and those available from the literature are typically well within ~100 K, effective temperatures predicted by the scales based on synthetic colors tend to be slightly higher than those resulting from the T_eff--color relations based on observations, with the offsets up to ~100 K. This is clearly seen both at [M/H]=-1.0 and -2.0, especially in the T_eff--(B-V) and T_eff--(V-K) planes. The consistency between T_eff--log g--color scales based on synthetic colors calculated with different stellar atmosphere codes is very good, with typical differences being well within \Delta T_eff~70 K at [M/H]=-1.0 and \Delta T_eff~40 K at [M/H]=-2.0.Comment: 20 pages, 11 figures, A&A accepte

    Photometric colors of late-type giants: theory versus observations

    Full text link
    To assess the current status in the theoretical modeling of the spectral properties of late-type giants, we provide a comparison of synthetic photometric colors of late-type giants (calculated with PHOENIX, MARCS and ATLAS model atmospheres) with observations, at [M/H]=0.0 and -2.0. Overall, there is a good agreement between observed and synthetic colors, and synthetic colors and published Teff-color relations, both at [M/H]=0.0 and -2.0. Deviations from the observed trends in Teff-color planes are generally within \pm 150K (or less) in the effective temperature range Teff=3500-4800K. Synthetic colors calculated with different stellar atmosphere models typically agree to ~100K, within a large range of effective temperatures and gravities. Some discrepancies are seen in the Teff-(B-V) plane below Teff~3800K at [M/H]=0.0, due to difficulties in reproducing the 'turn-off' to the bluer colors which is seen in the observed data at Teff~3600K. Note that at [M/H]=-2.0 effective temperatures given by the scale of Alonso et al. (1999) are generally lower than those resulting from other Teff-color relations based both on observed and synthetic colors.Comment: 2 pages, 1 figure. Proceedings of the IAU Symposium 232 "The Scientific Requirements for Extremely Large Telescopes", eds. P. Whitelock, B. Leibundgut, and M. Dennefel

    Boron depletion in 9 to 15 M(circle dot) stars with rotation

    Get PDF
    The treatment of mixing is still one of the major uncertainties in stellar evolution models. One open question is how well the prescriptions for rotational mixing describe the real effects. We tested the mixing prescriptions included in the Geneva stellar evolution code (GENEC) by following the evolution of surface abundances of light isotopes in massive stars, such as boron and nitrogen. We followed 9, 12 and 15 M(O) models with rotation from the zero age main sequence up to the end of He burning. The calculations show the expected behaviour with faster depletion of boton for faster rotating stars and more massive stars. The mixing at the surface is more efficient, than predicted by prescriptions used in other codes and reproduces the majority of observations very well However two observed stars with strong boron depletion but, no nitrogen enhancement still can not be explained and let the question open whether additional mixing processes are acting in these massive star

    A brief description of geological and geophysical exploration of the Marysville geothermal area

    Get PDF
    Extensive geological and geophysical surveys were carried out at the Marysville geothermal area during 1973 and 1974. The area has high heat flow (up to microcalories per square centimeter-second, a negative gravity anomaly, high electrical resistivity, low seismic ground noise, and nearby microseismic activity. Significant magnetic and infrared anomalies are not associated with the geothermal area. The geothermal anomaly occupies the axial portion of a dome in Precambrian sedimentary rocks intruded by Cretaceous and Cenozoic granitic rocks. The results from a 2.4-km-deep test well indicate that the cause of the geothermal anomaly is hydrothermal convection in a Cenozoic intrusive. A maximum temperature of 95 C was measured at a depth of 500 m in the test well

    Theoretical modelling of late-type giant atmospheres: preparing for Gaia

    Full text link
    Late type giants (RGB/AGB stars) will be important tracers of the Galactic morphology and evolution in the framework of Gaia, as they are intrinsically bright and thus can probe distant stellar populations or those obscured by interstellar extinction. A realistic representation of their atmospheres and spectra with stellar atmosphere models is thus of crucial importance, both for the design and optimization of Gaia instruments, as well as the interpretation of provided astrophysical data. Our analysis of synthetic photometric colors of late-type giants based on PHOENIX, MARCS and ATLAS model atmospheres indicates a general agreement between the current theoretical predictions and observations in the framework of stationary 1-D model atmospheres. Presently available models allow temperature determinations of RGB/AGB stars to an accuracy of ~\pm100 K. In an exploratory study we try to quantify possible residual systematic effects due to the approximations made in 1-D models using full 3-D hydrodynamical models. We find that differences in broad-band photometric colors calculated with 1-D and 3-D models are significant, translating to the offsets in effective temperature of up to ~70 K. Clearly, full 3-D hydrodynamical models will help to alleviate such ambiguities in current theoretical modeling. Additionally, they will allow to study new phenomena, to open qualitatively new windows for stellar astrophysics in the Gaia-era.Comment: Proceedings of "The Three Dimensional Universe With Gaia", Paris, October 4-7, 2004, 4 pages, 3 figure
    corecore