42 research outputs found

    Minimum distribution of subsea ice-bearing permafrost on the U.S. Beaufort Sea continental shelf

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Geophysical Research Letters 39 (2012): L15501, doi:10.1029/2012GL052222.Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.This research was sponsored by DOE-USGS Interagency Agreement DE-FE0002911. L.B. was supported by a DOE NETL/NRC Methane Hydrate Fellowship under DE-FC26-05NT42248

    Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Geomorphology 124 (2010): 55-64, doi:10.1016/j.geomorph.2010.08.009.Seafloor pockmarks occur worldwide and may represent millions of m3 of continental shelf erosion, but few numerical analyses of their morphology and spatial distribution of pockmarks exist. We introduce a quantitative definition of pockmark morphology and, based on this definition, propose a three-step geomorphometric method to identify and extract pockmarks from high-resolution swath bathymetry. We apply this GIS-implemented approach to 25 km2 of bathymetry collected in the Belfast Bay, Maine USA pockmark field. Our model extracted 1767 pockmarks and found a linear pockmark depth-to-diameter ratio for pockmarks field-wide. Mean pockmark depth is 7.6 m and mean diameter is 84.8 m. Pockmark distribution is non-random, and nearly half of the field's pockmarks occur in chains. The most prominent chains are oriented semi-normal to the steepest gradient in Holocene sediment thickness. A descriptive model yields field-wide spatial statistics indicating that pockmarks are distributed in non-random clusters. Results enable quantitative comparison of pockmarks in fields worldwide as well as similar concave features, such as impact craters, dolines, or salt pools

    Molluscan aminostratigraphy of the US Mid-Atlantic Quaternary coastal system: Implications for onshore-offshore correlation, paleochannel and barrier island evolution, and local late Quaternary sea-level history

    Get PDF
    The Quaternary record of the US Mid-Atlantic coastal system includes onshore emergent late Pleistocene shoreline deposits, offshore inner shelf and barrier island units, and paleovalleys formed during multiple glacial stage sea-level lowstands. The geochronology of this coastal system is based on uranium series, radiocarbon, amino acid racemization (AAR), and optically stimulated luminescence (OSL) methods. We report over 600 mollusk AAR results from 93 sites between northeastern North Carolina and the central New Jersey shelf, representing samples from both onshore cores or outcrops, sub-barrier and offshore cores, and transported shells from barrier island beaches. AAR age estimates are constrained by paired 14C analyses on specific shells and associated U-series coral ages from onshore sites. AAR data from offshore cores are interpreted in the context of detailed seismic stratigraphy. The distribution of Pleistocene-age shells on the island beaches is linked to the distribution of inner shelf or sub-barrier source units. Age mixing over a range of time-scales (~1 ka to ~100 ka) is identified by AAR results from onshore, beach, and shelf collections, often contributing insights into the processes forming individual barrier islands. The regional aminostratigraphic framework identifies a widespread late Pleistocene (Marine Isotope Stage 5) aminozone, with isolated records of middle and early Pleistocene deposition. AAR results provide age estimates for the timing of formation of the three major paleochannels that underlie the Delmarva Peninsula: Persimmon Point paleochannel ≥800 ka; Exmore paleochannel ~400–500 ka (MIS 12); and Eastville paleochannel \u3e 125 ka (MIS 6). The results demonstrate the value of synthesizing abundant AAR chronologic data across various coastal environments, integrating multiple distinct geologic studies. The ages and elevations of the Quaternary units are important for current hypotheses about relative sea-level history and crustal dynamics in the region, which was likely influenced by the Laurentide ice sheet, the margin just ~400 km to the north

    Subsea ice-bearing permafrost on the U.S. Beaufort Margin : 2. Borehole constraints

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 4333–4353, doi:10.1002/2016GC006582.Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.2017-05-0

    Seismic stratigraphic framework of the continental shelf offshore Delmarva, USA: implications for Mid-Atlantic Bight evolution since the Pliocene

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brothers, L. L., Foster, D. S., Pendleton, E. A., & Baldwin, W. E. Seismic stratigraphic framework of the continental shelf offshore Delmarva, USA: implications for Mid-Atlantic Bight evolution since the Pliocene. Marine Geology, 428, : (2020)106287, doi:10.1016/j.margeo.2020.106287.Understanding how past coastal systems have evolved is critical to predicting future coastal change. Using over 12,000 trackline kilometers of recently collected, co-located multi-channel boomer, sparker and chirp seismic reflection profile data integrated with previously collected borehole and vibracore data, we define the upper (< 115 m below mean lower low water) seismic stratigraphic framework offshore of the Delmarva Peninsula, USA. Twelve seismic units and 11 regionally extensive unconformities (U1-U11) were mapped over 5900 km2 of North America's Mid-Atlantic continental shelf. We interpret U3, U7, U9, U11 as transgressive ravinement surfaces, while U1,2,4,5,6,8,10 are subaerial unconformities illustrating distinct periods of lower sea-level. Based on areal distribution, stratigraphic relationships and dating results (Carbon 14 and amino acid racemization estimates) from earlier vibracore and borehole studies, we interpret the infilled channels as late Neogene and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York, James rivers and tributaries, and a broad flood plain. These findings indicate that the region's geologic framework is more complex than previously thought and that Pleistocene paleochannels are abundant in the Mid-Atlantic. This study synthesizes and correlates the findings of other Atlantic Margin studies and establishes a large-scale Quaternary framework that enables more detailed stratigraphic analysis in the future. Such work has implications for inner continental shelf systems tract evolution, the relationship between antecedent geology and modern coastal systems, assessments of eustacy, glacial isostatic adjustment, and other processes and forcings that play a role in passive margin evolution.This work was supported by the U.S. Department of the Interior's Response to Hurricane Sandy

    Subsea ice-bearing permafrost on the U.S. Beaufort Margin : 1. Minimum seaward extent defined from multichannel seismic reflection data

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 4354–4365, doi:10.1002/2016GC006584.Subsea ice-bearing permafrost (IBPF) and associated gas hydrate in the Arctic have been subject to a warming climate and saline intrusion since the last transgression at the end of the Pleistocene. The consequent degradation of IBPF is potentially associated with significant degassing of dissociating gas hydrate deposits. Previous studies interpreted the distribution of subsea permafrost on the U.S. Beaufort continental shelf based on geographically sparse data sets and modeling of expected thermal history. The most cited work projects subsea permafrost to the shelf edge (∼100 m isobath). This study uses a compilation of stacking velocity analyses from ∼100,000 line-km of industry-collected multichannel seismic reflection data acquired over 57,000 km2 of the U.S. Beaufort shelf to delineate continuous subsea IBPF. Gridded average velocities of the uppermost 750 ms two-way travel time range from 1475 to 3110 m s−1. The monotonic, cross-shore pattern in velocity distribution suggests that the seaward extent of continuous IBPF is within 37 km of the modern shoreline at water depths < 25 m. These interpretations corroborate recent Beaufort seismic refraction studies and provide the best, margin-scale evidence that continuous subsea IBPF does not currently extend to the northern limits of the continental shelf.DOE NETL/NRC Methane Hydrate Fellowship Grant Number: DE-FC26-05NT42248; USGS–DOE Interagency Agreements Grant Number: DE-FE000291 and 00234952017-05-0

    Development in the Gulf of Maine: Avoiding Geohazards and Embracing Opportunities

    Get PDF
    Mapping for marine-spatial planning is crucial if Maine is to safely develop its offshore resources, espe­cially wind and tidal energy. The authors focus on shallow natural gas (methane) deposits, an important and widespread geohazard in Maine’s seafloor. They describe the origin, occur­rence, and identification of natural gas in Maine’s seafloor; explain the hazards associated with these deposits and how to map them; and discuss what Maine can learn from European nations that have already developed their offshore wind resources. Because the U.S. gives states a central role in coastal management, Maine has the chance to be proactive in delineating coastal resources and demarcating potential seafloor hazards

    Shallow stratigraphic control on pockmark distribution in north temperate estuaries

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Geology 329-331 (2012): 34-45, doi:10.1016/j.margeo.2012.09.006.Pockmark fields occur throughout northern North American temperate estuaries despite the absence of extensive thermogenic hydrocarbon deposits typically associated with pockmarks. In such settings, the origins of the gas and triggering mechanism(s) responsible for pockmark formation are not obvious. Nor is it known why pockmarks proliferate in this region but do not occur south of the glacial terminus in eastern North America. This paper tests two hypotheses addressing these knowledge gaps: 1) the region's unique sea-level history provided a terrestrial deposit that sourced the gas responsible for pockmark formation; and 2) the region's physiography controls pockmarks distribution. This study integrates over 2500 km of high-resolution swath bathymetry, Chirp seismic reflection profiles and vibracore data acquired in three estuarine pockmark fields in the Gulf of Maine and Bay of Fundy. Vibracores sampled a hydric paleosol lacking the organic-rich upper horizons, indicating that an organic-rich terrestrial deposit was eroded prior to pockmark formation. This observation suggests that the gas, which is presumably responsible for the formation of the pockmarks, originated in Holocene estuarine sediments (loss on ignition 3.5–10%), not terrestrial deposits that were subsequently drowned and buried by mud. The 7470 pockmarks identified in this study are non-randomly clustered. Pockmark size and distribution relate to Holocene sediment thickness (r2 = 0.60), basin morphology and glacial deposits. The irregular underlying topography that dictates Holocene sediment thickness may ultimately play a more important role in temperate estuarine pockmark distribution than drowned terrestrial deposits. These results give insight into the conditions necessary for pockmark formation in nearshore coastal environments.Graduate support for Brothers came from a Maine Economic Improvement Fund Dissertation Fellowship

    Return of non-ACMG recommended incidental genetic findings to pediatric patients: Considerations and opportunities from experiences in genomic sequencing

    Get PDF
    BACKGROUND: The uptake of exome/genome sequencing has introduced unexpected testing results (incidental findings) that have become a major challenge for both testing laboratories and providers. While the American College of Medical Genetics and Genomics has outlined guidelines for laboratory management of clinically actionable secondary findings, debate remains as to whether incidental findings should be returned to patients, especially those representing pediatric populations. METHODS: The Sequencing Analysis and Diagnostic Yield working group in the Clinical Sequencing Evidence-Generating Research Consortium has collected a cohort of pediatric patients found to harbor a genomic sequencing-identified non-ACMG-recommended incidental finding. The incidental variants were not thought to be associated with the indication for testing and were disclosed to patients and families. RESULTS: In total, 23 non-ACMG-recommended incidental findings were identified in 21 pediatric patients included in the study. These findings span four different research studies/laboratories and demonstrate differences in incidental finding return rate across study sites. We summarize specific cases to highlight core considerations that surround identification and return of incidental findings (uncertainty of disease onset, disease severity, age of onset, clinical actionability, and personal utility), and suggest that interpretation of incidental findings in pediatric patients can be difficult given evolving phenotypes. Furthermore, return of incidental findings can benefit patients and providers, but do present challenges. CONCLUSIONS: While there may be considerable benefit to return of incidental genetic findings, these findings can be burdensome to providers and present risk to patients. It is important that laboratories conducting genomic testing establish internal guidelines in anticipation of detection. Moreover, cross-laboratory guidelines may aid in reducing the potential for policy heterogeneity across laboratories as it relates to incidental finding detection and return. However, future discussion is required to determine whether cohesive guidelines or policy statements are warranted

    More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: implications for pockmark field longevity

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Geo-Marine Letters 31 (2011): 237-248, doi:10.1007/s00367-011-0228-0.Mechanisms and timescales responsible for pockmark formation and maintenance remain uncertain, especially in areas lacking extensive thermogenic fluid deposits (e.g., previously glaciated estuaries). This study characterizes seafloor activity in the Belfast Bay, Maine nearshore pockmark field using (1) three swath bathymetry datasets collected between 1999 and 2008, complemented by analyses of shallow box-core samples for radionuclide activity and undrained shear strength, and (2) historical bathymetric data (report and smooth sheets from 1872, 1947, 1948). In addition, because repeat swath bathymetry surveys are an emerging data source, we present a selected literature review of recent studies using such datasets for seafloor change analysis. This study is the first to apply the method to a pockmark field, and characterizes macro-scale (>5 m) evolution of tens of square kilometers of highly irregular seafloor. Presence/absence analysis yielded no change in pockmark frequency or distribution over a 9-year period (1999–2008). In that time pockmarks did not detectably enlarge, truncate, elongate, or combine. Historical data indicate that pockmark chains already existed in the 19th century. Despite the lack of macroscopic changes in the field, near-bed undrained shear-strength values of less than 7 kPa and scattered downcore 137Cs signatures indicate a highly disturbed setting. Integrating these findings with independent geophysical and geochemical observations made in the pockmark field, it can be concluded that (1) large-scale sediment resuspension and dispersion related to pockmark formation and failure do not occur frequently within this field, and (2) pockmarks can persevere in a dynamic estuarine setting that exhibits minimal modern fluid venting. Although pockmarks are conventionally thought to be long-lived features maintained by a combination of fluid venting and minimal sediment accumulation, this suggests that other mechanisms may be equally active in maintaining such irregular seafloor morphology. One such mechanism could be upwelling within pockmarks induced by near-bed currents.Graduate support for Brothers came from a Maine Economic Improvement Fund Dissertation Fellowship
    corecore