74 research outputs found

    Disordered and Frustrated Magnetization in Coated MnFeâ‚‚Oâ‚„ Nanoparticles Prepared by Microwave Plasma Synthesis

    Get PDF
    Disordered and frustrated magnetization of different surface coated (Cr2O3, Co3O4, ZrO2, and SiO2) MnFe2O4 nanoparticles have been studied using SQUID-magnetometry. Magnetic measurements, such as ZFC/FC and ac-susceptibility evidence surface spin-glass behavior. ZFC/FC curves were also compared with numerical simulation to get information about effective anisotropy constants. Frequency dependent ac susceptibility results were analyzed by using Arrhenius, Vogel Fulcher and dynamic scaling laws to further confirm the spin-glass behavior. It is observed that the strength of surface spins disorder and frustration strongly depends upon the type of the coating material. All these analyses signify that disordered and frustrated surface magnetization in MnFe2O4 nanoparticles greatly depend on the type of the surface coating materials and are useful for controlling the nanoparticle’s magnetism for different practical applications

    Energetic ion loss diagnostic for the Wendelstein 7-AS stellarator

    Get PDF
    A diagnostic to measure the loss of energetic ions from the Wendelstein 7-AS (W7-AS) stellarator has been built. It is capable of measuring losses of both neutral beam ions and energetic ions arising from ion cyclotron resonant heating. The probe can measure losses of both clockwise and counterclockwise-going energetic ions simultaneously, and accepts a wide range of pitch angles in both directions. Initial measurements by the diagnostic are reported

    Interatomic potentials for atomistic simulations of the Ti-Al system

    Full text link
    Semi-empirical interatomic potentials have been developed for Al, alpha-Ti, and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large database of experimental as well as ab-initio data. The ab-initio calculations were performed by the linear augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide reasonable description of the lattice thermal expansion, demonstrating their usefulness in the molecular dynamics or Monte Carlo studies at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in gamma-TiAl calculated with the EAM potential is in a fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in gamma-TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that gamm-TiAl is an antisite disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press

    A Bitter-Type Toroidal Field Magnet for ZEPHYR

    No full text

    A Bitter-Type Toroidal Field Magnet for ZEPHYR

    No full text
    • …
    corecore