34 research outputs found

    Redirecting splicing with bifunctional oligonucleotides

    Get PDF
    Abstract: Ectopic modulators of alternative splicing are important tools to study the function of splice variants and for correcting mis-splicing events that cause human diseases. Such modulators can be bifunctional oligonucleotides made of an antisense portion that determines target specificity, and a nonhybridizing tail that recruits proteins or RNA/protein complexes that affect splice site selection (TOSS and TOES, respectively, for targeted oligonucleotide silencer of splicing and targeted oligonucleotide enhancer of splicing). The use of TOSS and TOES has been restricted to a handful of targets. To generalize the applicability and demonstrate the robustness of TOSS, we have tested this approach on more than 50 alternative splicing events. Moreover, we have developed an algorithm that can design active TOSS with a success rate of 80%. To produce bifunctional oligonucleotides capable of stimulating splicing, we built on the observation that binding sites for TDP-43 can stimulate splicing and improve U1 snRNP binding when inserted downstream from 50 splice sites. A TOES designed to recruit TDP-43 improved exon 7 inclusion in SMN2. Overall, our study shows that bifunctional oligonucleotides can redirect splicing on a variety of genes, justifying their inclusion in the molecular arsenal that aims to alter the production of splice variants

    Tumor microenvironment–associated modifications of alternative splicing

    Get PDF
    Abstract: Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∌20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors

    High-throughput quantification of splicing isoforms

    No full text
    Most human messenger RNAs (mRNAs) are alternatively spliced and many exhibit disease-specific splicing patterns. However, the contribution of most splicing events to the development and maintenance of human diseases remains unclear. As the contribution of alternative splicing events to diagnosis and prognosis is becoming increasingly recognized, it becomes important to develop precise methods to quantify the abundance of these isoforms in clinical samples. Here we present a pipeline for real-time PCR annotation of splicing events (RASE) that allows accurate identification of a large number of splicing isoforms in human tissues. The RASE automatically designed specific primer pairs for 81% of all alternative splicing events in the NCBI build 36 database. Experimentally, the majority of the RASE designed primers resulted in isoform-specific amplification suitable for quantification in human cell lines or in formalin-fixed, paraffin-embedded (FFPE) RNA extract. Using this pipeline it is now possible to rapidly identify splicing isoform signatures in different types of human tissues or to validate complete sets of data generated by microarray expression profiling and deep sequencing techniques

    Giant Amplification of Photoswitching by a Few Photons in Fluorescent Photochromic Organic Nanoparticles

    No full text
    International audienceControlling or switching the optical signal from a large collection of molecules with the minimum of photons represents an extremely attractive concept. Promising fundamental and practical applications may be derived from such a photon-saving principle. With this aim in mind, we have prepared fluorescent photochromic organic nanoparticles (NPs), showing bright red emission, complete ON–OFF contrast with full reversibility, and excellent fatigue resistance. Most interestingly, upon successive UV and visible light irradiation, the NPs exhibit a complete fluorescence quenching and recovery at very low photochromic conversion levels (<5 %), leading to the fluorescence photoswitching of 420±20 molecules for only one converted photochromic molecule. This “giant amplification of fluorescence photoswitching” originates from efficient intermolecular energy-transfer processes within the NPs

    Tumor microenvironment-associated modifications of alternative splicing

    No full text
    Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∌20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors

    Dynamics of molecular transport by surfactants in emulsions

    No full text
    We consider the dynamics of equilibration of the chemical potential of a fluorophore in a monodisperse emulsion containing droplets with two initially different concentrations of the fluorophore. Although the exchange mechanism involves a single timescale at the droplet (microscopic) level, the organisation of the droplets determines the exchange dynamics at the population (macroscopic) level. The micelle concentration in the continuous phase and the chemistry of the fluorophore control the microscopic exchange rate while the disorder of the initial condition determines the power-law of the long timescale, recovered in a minimal analytical model. We also show here that an additive in the droplet such as Bovine Serum Albumin (BSA) acts on the microscopic exchange rate and slows down the exchange process by increasing the solubility of the fluorophore in the dispersed phase rather than by creating a viscoelastic layer at the droplet interface
    corecore