170 research outputs found

    Разработка системы управления электротехнологической установкой на основе беспроводного интерфейса

    Get PDF
    Развитие микроконтроллерной техники дает возможность создать беспроводное устройство управления ЭТУ, которое позволило бы решить ряд проблем, возникающих в проводных системах, и сделало бы работу оператора более комфортной и безопасной. Объектом исследования является система беспроводного управления макетом электротехнологической установки (ЭТУ). Цель работы – разработка беспроводной системы управления макетом ЭТУ. В результате исследования была разработана работоспособная система управления ЭТУ состоящая из интерфейса управления и макета ЭТУ.The development of microcontroller technology makes it possible to create a wireless control device for an electrical installation, which would solve a number of problems arising in wired systems, and would make the operator's work more comfortable and safe. The object of the research is the system of wireless control of the layout of the electrotechnological installation of the electrotechnical installation. The purpose of the work is to develop a wireless control system for the layout of an electrotechnical installation. As a result of the study, a workable control system for an electrical installation was developed, consisting of a control interface and a model for an electrical installation

    One-step isolation and biochemical characterization of a highlyactive plant PSII monomeric core

    Get PDF
    We describe a one-step detergent solubilization protocol for isolating a highly active form of Photosystem II (PSII) from Pisum sativum L. Detailed characterization of the preparation showed that the complex was a monomer having no light harvesting proteins attached. This core reaction centre complex had, however, a range of low molecular mass intrinsic proteins as well as the chlorophyll binding proteins CP43 and CP47 and the reaction centre proteins D1 and D2. Of particular note was the presence of a stoichiometric level of PsbW, a low molecular weight protein not present in PSII of cyanobacteria. Despite the high oxygen evolution rate, the core complex did not retain the PsbQ extrinsic protein although there was close to a full complement of PsbO and PsbR and partial level of PsbP. However, reconstitution of PsbP and PsbPQ was possible. The presence of PsbP in absence of LHCII and other chlorophyll a/b binding proteins confirms that LHCII proteins are not a strict requirement for the assembly of this extrinsic polypeptide to the PSII core in contrast with the conclusion of Caffarri et al. (2009)

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Fast extraction of neuron morphologies from large-scale SBFSEM image stacks

    Get PDF
    Neuron morphology is frequently used to classify cell-types in the mammalian cortex. Apart from the shape of the soma and the axonal projections, morphological classification is largely defined by the dendrites of a neuron and their subcellular compartments, referred to as dendritic spines. The dimensions of a neuron’s dendritic compartment, including its spines, is also a major determinant of the passive and active electrical excitability of dendrites. Furthermore, the dimensions of dendritic branches and spines change during postnatal development and, possibly, following some types of neuronal activity patterns, changes depending on the activity of a neuron. Due to their small size, accurate quantitation of spine number and structure is difficult to achieve (Larkman, J Comp Neurol 306:332, 1991). Here we follow an analysis approach using high-resolution EM techniques. Serial block-face scanning electron microscopy (SBFSEM) enables automated imaging of large specimen volumes at high resolution. The large data sets generated by this technique make manual reconstruction of neuronal structure laborious. Here we present NeuroStruct, a reconstruction environment developed for fast and automated analysis of large SBFSEM data sets containing individual stained neurons using optimized algorithms for CPU and GPU hardware. NeuroStruct is based on 3D operators and integrates image information from image stacks of individual neurons filled with biocytin and stained with osmium tetroxide. The focus of the presented work is the reconstruction of dendritic branches with detailed representation of spines. NeuroStruct delivers both a 3D surface model of the reconstructed structures and a 1D geometrical model corresponding to the skeleton of the reconstructed structures. Both representations are a prerequisite for analysis of morphological characteristics and simulation signalling within a neuron that capture the influence of spines

    Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å

    Get PDF
    Photosystem II is the site of photosynthetic water oxidation and contains 20 subunits with a total molecular mass of 350 kDa. The structure of photosystem II has been reported at resolutions from 3.8 to 2.9 angstrom. These resolutions have provided much information on the arrangement of protein subunits and cofactors but are insufficient to reveal the detailed structure of the catalytic centre of water splitting. Here we report the crystal structure of photosystem II at a resolution of 1.9 angstrom. From our electron density map, we located all of the metal atoms of the Mn(4)CaO(5) cluster, together with all of their ligands. We found that five oxygen atoms served as oxo bridges linking the five metal atoms, and that four water molecules were bound to the Mn(4)CaO(5) cluster; some of them may therefore serve as substrates for dioxygen formation. We identified more than 1,300 water molecules in each photosystem II monomer. Some of them formed extensive hydrogen-bonding networks that may serve as channels for protons, water or oxygen molecules. The determination of the high-resolution structure of photosystem II will allow us to analyse and understand its functions in great detail

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Crustal structure along the Peruvian Margin from wide angle seismic data

    No full text
    Within the GEOPECO project (Geophysical Experiments at the Peruvian Continental Margin - investigations of tectonics, mechanics, gas hydrates and fluid transport) seismic refraction and reflection data were acquired during RV 'Sonne' cruise SO 146 along with bathymetric and gravimetric mapping, sea-floor sampling, observation of the ocean floor and heat flow measurements. The objectives were a quantitative characterization of the structures and geodynamics of the Peruvian section of the Andean subduction zone and the associated gas hydrate systems in regions with differing tectonic development. The oceanic Nazca Plate, which is approximately 28 to 38 million years new at the Peruvian trench, is subducting under the South American Plate. The Peruvian Continental Margin has been influenced over the last 8 million years by collision with the Nazca Ridge, a 400 km long and 50 km wide basement high. Collision migrated progressively from north to south, is presently in the area of 15°S and has influenced the area to the north in several ways. Six wide angle seismic profiles, each approximately 100nm long, were shot with three 32 liter Bolt-airguns over 9 to 14 OBH/S instruments at the Peruvian Margin. During the cruise a total amount of 127 OBH/S were successfully deployed showing high quality data. Forward modeling was performed to characterize the structure and the velocities of the different stages of the evolution of the margin after collision with the Nazca Ridge. The coincident reflection seismic profiles were used to constrain the structure and thickness of the upper layers. The resulting crustal cross sections reveal a rough surface and a thin sediment layer of the subducting oceanic Nazca Plate. The crust thickens beneath the Nazca Ridge. Its thickness also varies north and south of Mendana Fracture Zone (MFZ), which separates younger (~25 Ma old) from older (~35 Ma old) oceanic crust at about 11°S. There is no accretionary wedge where Nazca Ridge currently subducts. 3 Ma after the ridge has passed, a new accretionary prism is already set up with a width of 20 to 30 km and 4 to 5 km thickness which does not further increase in size as revealed by the profiles recorded further north of Nazca Ridge. This indicates that current subduction along the Peruvian Margin is non-accreting. The slope angle of the accretionary prism increases south of MFZ, whereas the profile north of MFZ shows a smaller slope angle. As the subducting Nazca Plate dips at about 6° on all profiles north of Nazca Ridge, the resulting taper is 12° to 17°, indicative of high basal friction and non-accretionary subduction. The horst and graben like structure and rough topography of the oceanic plate also substantiates non-accretionary even erosional subduction for the graben structures are filled with sediment before subduction. Two cross profiles from Lima Basin reveal the crustal structure of the continental slope. Lima Basin is some 80 km wide (along dip) and its thickness varies from 1 to 3 km below sea floor. Furthermore it shows an asymmetric shape and is divided into two parts by a basement high at the landward termination

    Photometric determination of small amounts of o-phosphate with Malachite Green

    No full text
    corecore