17,910 research outputs found

    Conceptual design and analysis of a large antenna utilizing electrostatic membrane management

    Get PDF
    Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed

    Periodic Table of Virus Capsids: Implications for Natural Selection and Design

    Get PDF
    Background: For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. Principal Findings: This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest ‘‘hexamer complexity’’, C h) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Significance: Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometryderive

    Report of visiting committee : an evaluation of Itawamba Junior College and Agricultural High School, April 6-9, 1953

    Get PDF
    https://egrove.olemiss.edu/ms_school_surveys/1017/thumbnail.jp

    Destruction of density-wave states by a pseudo-gap in high magnetic fields: application to (TMTSF)2_2ClO4_4

    Get PDF
    A model is presented for the destruction of density-wave states in quasi-one-dimensional crystals by high magnetic fields. The model is consistent with previously unexplained properties of the organic conductors (TMTSF)2_2ClO4_4 and (BEDT-TTF)2_2MHg(SCN)4_4 (M=K,Rb,Tl). As the magnetic field increases quasi-one-dimensional density-wave fluctuations increase, producing a pseudo-gap in the electronic density of states near the transition temperature. When the pseudo-gap becomes larger than the mean-field transition temperature formation of a density-wave state is not possible.Comment: 4 pages, RevTeX, 2 figures in uuencoded compressed tar file. Small changes to text and Figure 1. Final version to appear in Physical Review Letter

    A multiwavelength study of young massive star forming regions: II. The dust environment

    Full text link
    We present observations of 1.2-mm dust continuum emission, made with the Swedish ESO Submillimeter Telescope, towards eighteen luminous IRAS point sources, all with colors typical of compact HII regions and associated with CS(2-1) emission, thought to be representative of young massive star forming regions. Emission was detected toward all the IRAS objects. We find that the 1.2-mm sources associated with them have distinct physical parameters, namely sizes of 0.4 pc, dust temperatures of 30 K, masses of 2x10^3 Msun, column densities of 3x10^23 cm^-2, and densities of 4x10^5 cm^-3. We refer to these dust structures as massive and dense cores. Most of the 1.2-mm sources show single-peaked structures, several of which exhibit a bright compact peak surrounded by a weaker extended envelope. The observed radial intensity profiles of sources with this type of morphology are well fitted with power-law intensity profiles with power-law indices in the range 1.0-1.7. This result indicates that massive and dense cores are centrally condensed, having radial density profiles with power-law indices in the range 1.5-2.2. We also find that the UC HII regions detected with ATCA towards the IRAS sources investigated here (Paper I) are usually projected at the peak position of the 1.2-mm dust continuum emission, suggesting that massive stars are formed at the center of the centrally condensed massive and dense cores.Comment: 6 figures, accepted by Ap
    corecore