1,394 research outputs found

    Experimental reintroduction of woody debris on the Williams River, NSW: geomorphic and ecological responses

    Get PDF
    A total of 436 logs were used to create 20 engineered log jams (ELJs) in a 1.1 km reach of the Williams River, NSW, Australia, a gravel-bed river that has been desnagged and had most of its riparian vegetation removed over the last 200 years. The experiment was designed to test the effectiveness of reintroducing woody debris (WD) as a means of improving channel stability and recreating habitat diversity. The study assessed geomorphic and ecological responses to introducing woody habitat by comparing paired test and control reaches. Channel characteristics (e.g. bedforms, bars, texture) within test and control reaches were assessed before and after wood placement to quantify the morphological variability induced by the ELJs in the test reach. Since construction in September 2000, the ELJs have been subjected to five overtopping flows, three of which were larger than the mean annual flood. A high-resolution three-dimensional survey of both reaches was completed after major bed-mobilizing flows. Cumulative changes induced by consecutive floods were also assessed. After 12 months, the major geomorphologic changes in the test reach included an increase in pool and riffle area and pool depth; the addition of a pool-riffle sequence; an increase by 0.5-1 m in pool-riffle amplitude; a net gain of 40 m3 of sediment storage per 1000 m2 of channel area (while the control reach experienced a net loss of 15 m3/1000 m2 over the same period); and a substantial increase in the spatial complexity of bed-material distribution. Fish assemblages in the test reach showed an increase in species richness and abundance, and reduced temporal variability compared to the reference reach, suggesting that the changes in physical habitat were beneficial to fish at the reach scale

    Putting the wood back into our rivers: an experiment in river rehabilitation

    Get PDF
    This paper presents an overview of a project established to assess the effectiveness of woody debris (WD) reintroduction as a river rehabilitation tool. An outline of an experiment is presented that aims to develop and assess the effectiveness of engineered log jams (ELJs) under Australian conditions, and to demonstrate the potential for using a range of ELJs to stabilise a previously de-snagged, high energy gravel-bed channel. Furthermore, the experiment will test the effectiveness of a reach based rehabilitation strategy to increase geomorphic variability and hence habitat diversity. While primarily focusing on the geomorphic and engineering aspects of the rehabilitation strategy, fish and freshwater mussel populations are also being monitored. The project is located within an 1100m reach of the Williams River, NSW. Twenty separate ELJ structures were constructed, incorporating a total of 430 logs placed without any artificial anchoring (e.g., no cabling or imported ballast). A geomorphic control reach was established 3.1 km upstream of the project reach. In the 6 months since the structures were built the study site has experienced 6 flows that have overtopped most structures, 3 of the flows were in excess of the mean annual flood, inundating 19 of the ELJs by 2 - 3 m, and one by 0.5 m. Early results indicate that with the exception of LS4 and LS5, all structures are performing as intended and that the geomorphic variability of the reach has substantially increased

    Precise Determination of the Neutron Magnetic Form Factor to Higher Q2Q^2

    Full text link
    The neutron elastic magnetic form factor GMnG_M^n has been extracted from quasielastic scattering from deuterium in the CEBAF Large Acceptance Spectrometer, CLAS. The kinematic coverage of the measurement is continuous over a broad range, extending from below 1 GeV2GeV^2 to nearly 5 GeV2GeV^2 in four-momentum transfer squared. High precision is achieved by employing a ratio technique in which most uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Preliminary results are shown with statistical errors only.Comment: Contribution to the proceedings of the Tenth International Conference on Baryons (2004), to be published in Nuclear Physics, Section

    The Chiral Phase Transition in Dissipative Dynamics

    Get PDF
    Numerical simulations of the chiral phase transition in the (3+1)dimensional O(4)-model are presented. The evolutions of the chiral field follow purely dissipative dynamics, starting from random chirally symmetric initial configurations down to the true vacuum with spontaneously broken symmetry. The model stabilizes topological textures which are formed together with domains of disoriented chiral condensate (DCC) during the roll-down phase. The classically evolving field acts as source for the emission of pions and σ\sigma mesons. The exponents of power laws for the growth of angular correlations and for emission rates are extracted. Fluctuations in the abundance ratios for neutral and charged pions are compared with those for uncorrelated sources as potential signature for the chiral phase transition after heavy-ion collisions. It is found that the presence of stabilizing textures (baryons and antibaryons) prevents sufficiently rapid growth of DCC-domain size, so observability of anomalous tails in the abundance ratios is unlikely. However, the transient formation of growing DCC domains causes sizable broadening of the distributions as compared to the statistical widths of generic sources.Comment: 28 pages, 8 figure

    Effectiveness of the global protected area network in representing species diversity

    Get PDF
    The Fifth World Parks Congress in Durban, South Africa, announced in September 2003 that the global network of protected areas now covers 11.5% of the planet's land surface. This surpasses the 10% target proposed a decade earlier, at the Caracas Congress, for 9 out of 14 major terrestrial biomes. Such uniform targets based on percentage of area have become deeply embedded into national and international conservation planning. Although politically expedient, the scientific basis and conservation value of these targets have been questioned. In practice, however, little is known of how to set appropriate targets, or of the extent to which the current global protected area network fulfils its goal of protecting biodiversity. Here, we combine five global data sets on the distribution of species and protected areas to provide the first global gap analysis assessing the effectiveness of protected areas in representing species diversity. We show that the global network is far from complete, and demonstrate the inadequacy of uniform—that is, 'one size fits all'—conservation targets

    Kinematically Complete Measurements of p+p→p+n+(pi+) Near Threshold

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Charge and Isospin Fluctuations in High Energy pp-Collisions

    Full text link
    Charge and isospin event-by-event fluctuations in high-energy pp-collisions are predicted within the Unitary Eikonal Model, in particular the fluctuation patterns of the ratios of charged-to-charged and neutral-to-charged pions. These fluctuations are found to be sensitive to the presence of unstable resonances, such as ρ\rho and ω\omega mesons. We predict that the charge-fluctuation observable DUEMD_{UEM} should be restricted to the interval 8/3≀DUEM≀48/3\le D_{UEM}\le 4 depending on the ρ/π\rho /\pi production ratio. Also, the isospin fluctuations of the DCC-type of the ratio of neutral-to-charged pions are suppressed if pions are produced together with ρ\rho mesons.Comment: Latex, 5 pages, no figures. To appear in the proceedings of 9th Adriatic Meeting, Dubrovnik, Croatia, 4 - 14 September 2003. Added reference into reference no.

    Kinematically Complete Measurements of p+p → p+n+(pi+) Near Threshold

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT
    • 

    corecore