5,423 research outputs found

    The interactive relationship between coastal erosion and flood risk

    Get PDF
    Coastal erosion and flooding are hazards that, when combined with facilitative pathways and vulnerable receptors, represent sources of coastal risk. Erosion and flooding risks are often analysed separately owing to complex relationships between driving processes, morphological response and risk receptors. We argue that these risks should be considered jointly and illustrate this through discussion of three ‘expressions’ of this interactive relationship: coastal morphology modifies flood hazard; future flood risk depends on changing shoreline position; and the simultaneous occurrence of erosion–flooding events. Some critical thoughts are offered on the general applicability of these expressions and the implications for coastal risk management policy. This research is funded by the NERC/ESRC Data, Risk and Environmental Analytical Methods (DREAM) Centre, Grant/Award Number: NE/M009009/

    DIAPHRAGM MUSCLE STRIP PREPARATION FOR EVALUATION OF GENE THERAPIES IN mdx MICE

    Full text link
    1.  Duchenne muscular dystrophy (DMD), a severe muscle wasting disease of young boys with an incidence of one in every 3000, results from a mutation in the gene that encodes dystrophin. The absence of dystrophin expression in skeletal muscles and heart results in the degeneration of muscle fibres and, consequently, severe muscle weakness and wasting. The mdx mouse discovered in 1984, with some adjustments for differences, has proven to be an invaluable model for scientific investigations of dystrophy. 2.  The development of the diaphagm strip preparation provided an ideal experimental model for investigations of skeletal muscle impairments in structure and function induced by interactions of disease- and age-related factors. Unlike the limb muscles of the mdx mouse, which show adaptive changes in structure and function, the diaphragm strip preparation reflects accurately the deterioration in muscle structure and function observed in boys with DMD. 3.  The advent of sophisticated servo motors and force transducers interfaced with state-of-the-art software packages to drive complex experimental designs during the 1990s greatly enhanced the capability of the mdx mouse and the diaphragm strip preparation to evaluate more accurately the impact of the disease on the structure–function relationships throughout the life span of the mouse. 4.  Finally, during the 1990s and through the early years of the 21st century, many promising, sophisticated genetic techniques have been designed to ameliorate the devastating impact of muscular dystrophy on the structure and function of skeletal muscles. During this period of rapid development of promising genetic therapies, the combination of the mdx mouse and the diaphragm strip preparation has provided an ideal model for the evaluation of the success, or failure, of these genetic techniques to improve dystrophic muscle structure, function or both. With the 2 year life span of the mdx mouse, the impact of age-related effects can be studied in this model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72970/1/j.1440-1681.2007.04865.x.pd

    Southern North Sea storm surge event of 5 December 2013: Water levels, waves and coastal impacts

    Get PDF
    The storm surge event that affected the coastal margins of the southern North Sea on 5–6 December 2013 produced the highest still water levels on record at several tide gauges on the UK east coast. On east-facing coasts south of the Humber estuary and north-facing Norfolk, water levels were higher than in the twentieth century benchmark surge event of 31 January–1 February 1953. Maximum significant wave heights were highest off the North Norfolk coast (peak Hs = 3.8 m offshore, 2.9 m inshore) and lowest off the Suffolk coast (Hs = 1.5–1.8 m inshore); comparable offshore wave heights in 1953 were 7–8 m and ca. 3 m. The lower wave heights, and their short duration, in 2013 explain both localised breaching, overtopping, and back-barrier flooding associated with gravel ridges and relatively low earthen banks as well as the lack of failure in more highly-engineered coastal defences. On barrier coasts and within estuaries, the signal of maximum runup was highly variable, reflecting the modification of the tide–surge–wave signal by inshore bathymetry and the presence of a range of coastal ecosystems. The landscape impacts of the December 2013 surge included the notching of soft rock cliffs and cliffline retreat; erosion of coastal dunes; and the augmentation or re-activation of barrier island washover deposits. Whilst surge event-related cliff retreat on the rapidly eroding cliffs of the Suffolk coast lay within the natural variability in inter-annual rates of retreat, the impact of the surge on upper beach/sand dune margins produced a pulse of shoreline translation landwards equivalent to about 10 years of ‘normal’ shoreline retreat. The study of east coast surges over the last 60 years, and the identification of significant phases of landscape change — such as periods of rapid soft rock cliff retreat and the formation of new gravel washovers on barrier islands — points to the importance of high water levels being accompanied by high wave activity. Future developments in early warning systems and evacuation planning require information on the variable impacts of such extreme events.This paper is a contribution to NERC BESS Consortium grant A hierarchical approach to the examination of the relationship between biodiversity and ecosystem service flows across coastal margins (grant reference NE/J015423/1). Table 5 incorporates information gathered as part of an EU FP7 Collaborative Project Resilience-Increasing Strategies for Coasts — toolkit (RISC_KIT).This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0012825215000628#

    A preliminary audit of medical and aid provision in English Rugby union clubs:compliance with Regulation 9

    Get PDF
    BackgroundGoverning bodies are largely responsible for the monitoring and management of risks associated with a safe playing environment, yet adherence to regulations is currently unknown. The aim of this study was to investigate and evaluate the current status of medical personnel, facilities, and equipment in Rugby Union clubs at regional level in England.MethodsA nationwide cross-sectional survey of 242 registered clubs was undertaken, where clubs were surveyed online on their current medical personnel, facilities, and equipment provision, according to regulation 9 of the Rugby Football Union (RFU).ResultsOverall, 91 (45. 04%) surveys were returned from the successfully contacted recipients. Of the completed responses, only 23.61% (n = 17) were found to be compliant with regulations. Furthermore, 30.56% (n = 22) of clubs were unsure if their medical personnel had required qualifications; thus, compliance could not be determined. There was a significant correlation (p = −0.029, r = 0.295) between club level and numbers of practitioners. There was no significant correlation indicated between the number of practitioners/number of teams and number of practitioners/number of players. There were significant correlations found between club level and equipment score (p = 0.003, r = −0.410), club level and automated external defibrillator (AED) access (p = 0.002, r = −0.352) and practitioner level and AED access (p = 0.0001, r = 0.404). Follow-up, thematic analysis highlighted widespread club concern around funding/cost, awareness, availability of practitioners and AED training.ConclusionThe proportion of clubs not adhering overall compliance with Regulation 9 of the RFU is concerning for player welfare, and an overhaul, nationally, is required

    The comprehensive cohort model in a pilot trial in orthopaedic trauma

    Get PDF
    Background: The primary aim of this study was to provide an estimate of effect size for the functional outcome of operative versus non-operative treatment for patients with an acute rupture of the Achilles tendon using accelerated rehabilitation for both groups of patients. The secondary aim was to assess the use of a comprehensive cohort research design (i.e. a parallel patient-preference group alongside a randomised group) in improving the accuracy of this estimate within an orthopaedic trauma setting. Methods: Pragmatic randomised controlled trial and comprehensive cohort study within a level 1 trauma centre. Twenty randomised participants (10 operative and 10 non-operative) and 29 preference participants (3 operative and 26 non-operative). The ge range was 22-72 years and 37 of the 52 patients were men. All participants had an acute rupture of their Achilles tendon and no other injuries. All of the patients in the operative group had a simple end-to-end repair of the tendon with no augmentation. Both groups then followed the same eight-week immediate weight-bearing rehabilitation programme using an off-the-shelf orthotic. The disability rating index (DRI; primary outcome), EQ-5D, Achilles Total Rupture Score and complications were assessed ed at two weeks, six weeks, three months, six months and nine months after initial injury. Results: At nine months, there was no significant difference in DRI between patients randomised to operative or non-operative management. There was no difference in DRI between the randomised group and the parallel patient preference group. The use of a comprehensive cohort of patients did not provide useful additional information as to the treatment effect size because the majority of patients chose non-operative management. Conclusions: Recruitment to clinical trials that compare operative and non-operative interventions is notoriously difficult; especially within the trauma setting. Including a parallel patient preference group to create a comprehensive cohort of patients has been suggested as a way of increasing the power of such trials. In our study, the comprehensive cohort model doubled the number of patients involved in the study. However, a strong preference for non-operative treatment meant that the increased number of patients did not significantly increase the ability of the trial to detect a difference between the two interventions

    Value-at-risk forecasting of the CARBS Indices

    Get PDF
    Abstract: The purpose of this paper is to use calibrated univariate GARCH family models to forecast volatility and value at risk (VaR) of the CARBS indices and a global minimum variance portfolio (GMVP) constructed using the CARBS equity indices. the reliability of the different volatility forecasts are tested using the mean absolute error (MAE) and the mean squared error (MSE). The rolling forecast of VaR is tested using a back-testing procedure. The results indicate that the use of a rolling forecast from a GARCH model when estimating VaR for the CARBS indices and the GMVP is not a reliable method

    Impact of management regime and regime change on gravel barrier response to a major storm surge

    Get PDF
    Gravel barriers represent physiographic, hydrographic, sedimentary, and ecological boundaries between inshore and open marine offshore environments, where they provide numerous important functions. The morphosedimentary features of gravel barriers (e.g., steep, energy reflective form) have led to their characterization as effective coastal defense features during extreme hydrodynamic conditions. Consequently, gravel barriers have often been intensively managed to enhance coastal defense functions. The Blakeney Point Barrier System (BPBS), U.K., is one such example, which offers the opportunity to investigate the impact of alternative management regimes under extreme hydrodynamic conditions. The BPBS was actively re-profiled along its eastern section from the 1950s to the winter of 2005, whilst undergoing no active intervention along its western section. Combining an analysis of remotely sensed elevation datasets with numerical storm surge modeling, this paper finds that interventionist management introduces systemic differences in barrier morphological characteristics. Overly steepened barrier sections experience greater wave run-up extents during storm surge conditions, leading to more extreme morphological changes and landward barrier retreat. Furthermore, while high, steep barriers can be highly effective at preventing landward flooding, in cases where overwashing does occur, the resultant landward overtopping volume is typically higher than would be the case for a relatively lower crested barrier with a lower angled seaward slope. There is a growing preference within coastal risk management for less interventionist management regimes, incorporating natural processes. However, restoring natural processes does not immediately or inevitably result in a reduction in coastal risk. This paper contributes practical insights regarding the time taken for a previously managed barrier to relax to a more natural state, intermediary morphological states, and associated landward water flows during extreme events, all of which should be considered if gravel barriers are to be usefully integrated into broader risk management strategies.</jats:p
    corecore