21,842 research outputs found

    The Apollo spacecraft: A chronology volume 4, 21 January 1966 - 13 July 1974

    Get PDF
    This final volume of the chronology is divided into three parts: (1) preparation for flight, the accident, and investigation; (2) recovery, spacecraft redefinition, and the first manned flight; and (3) man circles the moon, the Eagle lands, and manned space exploration. Congressional documents, official correspondence, government and contractor reports, memoranda, working papers, and minutes of meetings were used as primary sources. A relatively few entries are based on press releases and newspaper and magazine articles

    Orbital moment of a single Co atom on a Pt(111) surface - a view from correlated band theory

    Full text link
    The orbital magnetic moment of a Co adatom on a Pt(111) surface is calculated in good agreement with experimental data making use of the LSDA+U method. It is shown that both electron correlation induced orbital polarization and structural relaxation play essential roles in orbital moment formation. The microscopic origins of the orbital moment enhancement are discussed

    The spin-wave spectrum of the Jahn-Teller system LaTiO3

    Get PDF
    We present an analytical calculation of the spin-wave spectrum of the Jahn-Teller system LaTiO3. The calculation includes all superexchange couplings between nearest-neighbor Ti ions allowed by the space-group symmetries: The isotropic Heisenberg couplings and the antisymmetric (Dzyaloshinskii-Moriya) and symmetric anisotropies. The calculated spin-wave dispersion has four branches, two nearly degenerate branches with small zone-center gaps and two practically indistinguishable high-energy branches having large zone-center gaps. The two lower-energy modes are found to be in satisfying agreement with neutron-scattering experiments. In particular, the experimentally detected approximate isotropy in the Brillouin zone and the small zone-center gap are well reproduced by the calculations. The higher-energy branches have not been detected yet by neutron scattering but their zone-center gaps are in satisfying agreement with recent Raman data.Comment: 13 pages, 5 figure

    Letter to Philander Chase

    Get PDF
    Mr. Brooks tells Bishop Chase of a Mr. Cockren, who recently became Episcopalian. Brooks thinks Cockren would do good in the service of Bishop Chase in America, ministering to the Scotch in Ohio.https://digital.kenyon.edu/chase_letters/1323/thumbnail.jp

    Low EUV Luminosities Impinging on Protoplanetary Disks

    Get PDF
    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the EUV luminosity impinging on 14 disks around young (~2-10Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 1042^{42} photons/s for all sources without jets and lower than 5×10405 \times 10^{40} photons/s for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [NeII] 12.81 micron luminosities from three disks with slow [NeII]-detected winds. This indicates that the [NeII] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.Comment: Accepted for publication to The Astrophysical Journa

    Counting automorphic forms on norm one tori

    Get PDF
    We give an asymptotic formula for the number of automorphic forms on the non-split norm one torus T associated with an imaginary quadratic extension of Q, ordered by analytic conductor

    Evaluation of specific heat for superfluid helium between 0 - 2.1 K based on nonlinear theory

    Get PDF
    The specific heat of liquid helium was calculated theoretically in the Landau theory. The results deviate from experimental data in the temperature region of 1.3 - 2.1 K. Many theorists subsequently improved the results of the Landau theory by applying temperature dependence of the elementary excitation energy. As well known, many-body system has a total energy of Galilean covariant form. Therefore, the total energy of liquid helium has a nonlinear form for the number distribution function. The function form can be determined using the excitation energy at zero temperature and the latent heat per helium atom at zero temperature. The nonlinear form produces new temperature dependence for the excitation energy from Bose condensate. We evaluate the specific heat using iteration method. The calculation results of the second iteration show good agreement with the experimental data in the temperature region of 0 - 2.1 K, where we have only used the elementary excitation energy at 1.1 K.Comment: 6 pages, 3 figures, submitted to Journal of Physics: Conference Serie

    Development of a carbon fibre composite active mirror: Design and testing

    Full text link
    Carbon fibre composite technology for lightweight mirrors is gaining increasing interest in the space- and ground-based astronomical communities for its low weight, ease of manufacturing, excellent thermal qualities and robustness. We present here first results of a project to design and produce a 27 cm diameter deformable carbon fibre composite mirror. The aim was to produce a high surface form accuracy as well as low surface roughness. As part of this programme, a passive mirror was developed to investigate stability and coating issues. Results from the manufacturing and polishing process are reported here. We also present results of a mechanical and thermal finite element analysis, as well as early experimental findings of the deformable mirror. Possible applications and future work are discussed.Comment: Accepted by Optical Engineering. Figures 1-7 on http://www.star.ucl.ac.uk/~sk/OEpaper_files

    On Auxiliary Fields in BF Theories

    Full text link
    We discuss the structure of auxiliary fields for non-Abelian BF theories in arbitrary dimensions. By modifying the classical BRST operator, we build the on-shell invariant complete quantum action. Therefore, we introduce the auxiliary fields which close the BRST algebra and lead to the invariant extension of the classical action.Comment: 7 pages, minor changes, typos in equations corrected and acknowledgements adde
    corecore