2,695 research outputs found

    Southern North Sea storm surge event of 5 December 2013: Water levels, waves and coastal impacts

    Get PDF
    The storm surge event that affected the coastal margins of the southern North Sea on 5–6 December 2013 produced the highest still water levels on record at several tide gauges on the UK east coast. On east-facing coasts south of the Humber estuary and north-facing Norfolk, water levels were higher than in the twentieth century benchmark surge event of 31 January–1 February 1953. Maximum significant wave heights were highest off the North Norfolk coast (peak Hs = 3.8 m offshore, 2.9 m inshore) and lowest off the Suffolk coast (Hs = 1.5–1.8 m inshore); comparable offshore wave heights in 1953 were 7–8 m and ca. 3 m. The lower wave heights, and their short duration, in 2013 explain both localised breaching, overtopping, and back-barrier flooding associated with gravel ridges and relatively low earthen banks as well as the lack of failure in more highly-engineered coastal defences. On barrier coasts and within estuaries, the signal of maximum runup was highly variable, reflecting the modification of the tide–surge–wave signal by inshore bathymetry and the presence of a range of coastal ecosystems. The landscape impacts of the December 2013 surge included the notching of soft rock cliffs and cliffline retreat; erosion of coastal dunes; and the augmentation or re-activation of barrier island washover deposits. Whilst surge event-related cliff retreat on the rapidly eroding cliffs of the Suffolk coast lay within the natural variability in inter-annual rates of retreat, the impact of the surge on upper beach/sand dune margins produced a pulse of shoreline translation landwards equivalent to about 10 years of ‘normal’ shoreline retreat. The study of east coast surges over the last 60 years, and the identification of significant phases of landscape change — such as periods of rapid soft rock cliff retreat and the formation of new gravel washovers on barrier islands — points to the importance of high water levels being accompanied by high wave activity. Future developments in early warning systems and evacuation planning require information on the variable impacts of such extreme events.This paper is a contribution to NERC BESS Consortium grant A hierarchical approach to the examination of the relationship between biodiversity and ecosystem service flows across coastal margins (grant reference NE/J015423/1). Table 5 incorporates information gathered as part of an EU FP7 Collaborative Project Resilience-Increasing Strategies for Coasts — toolkit (RISC_KIT).This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0012825215000628#

    Normal mode analysis of macromolecular systems with the mobile block Hessian method

    Get PDF
    Until recently, normal mode analysis (NMA) was limited to small proteins, not only because the required energy minimization is a computationally exhausting task, but also because NMA requires the expensive diagonalization of a 3N(a) x 3N(a) matrix with N-a the number of atoms. A series of simplified models has been proposed, in particular the Rotation-Translation Blocks (RTB) method by Tama et al. for the simulation of proteins. It makes use of the concept that a peptide chain or protein can be seen as a subsequent set of rigid components, i.e. the peptide units. A peptide chain is thus divided into rigid blocks with six degrees of freedom each. Recently we developed the Mobile Block Hessian (MBH) method, which in a sense has similar features as the RTB method. The main difference is that MBH was developed to deal with partially optimized systems. The position/orientation of each block is optimized while the internal geometry is kept fixed at a plausible - but not necessarily optimized - geometry. This reduces the computational cost of the energy minimization. Applying the standard NMA on a partially optimized structure however results in spurious imaginary frequencies and unwanted coordinate dependence. The MBH avoids these unphysical effects by taking into account energy gradient corrections. Moreover the number of variables is reduced, which facilitates the diagonalization of the Hessian. In the original implementation of MBH, atoms could only be part of one rigid block. The MBH is now extended to the case where atoms can be part of two or more blocks. Two basic linkages can be realized: (1) blocks connected by one link atom, or (2) by two link atoms, where the latter is referred to as the hinge type connection. In this work we present the MBH concept and illustrate its performance with the crambin protein as an example

    Implementation of a population-based epidemiological rare disease registry: study protocol of the amyotrophic lateral sclerosis (ALS) - registry Swabia

    Get PDF
    BACKGROUND: The social and medical impact of rare diseases is increasingly recognized. Amyotrophic lateral sclerosis (ALS) is the most prevalent of the motor neuron diseases. It is characterized by rapidly progressive damage to the motor neurons with a survival of 2–5 years for the majority of patients. The objective of this work is to describe the study protocol and the implementation steps of the amyotrophic lateral sclerosis (ALS) registry Swabia, located in the South of Germany. METHODS/DESIGN: The ALS registry Swabia started in October 2010 with both, the retrospective (01.10.2008-30.09.2010) and prospective (from 01.10.2010) collection of ALS cases, in a target population of 8.6 million persons in Southern Germany. In addition, a population based case–control study was implemented based on the registry that also included the collection of various biological materials. Retrospectively, 420 patients (222 men and 198 women) were identified. Prospectively data of ALS patients were collected, of which about 70% agreed to participate in the population-based case–control study. All participants in the case–control study provided also a blood sample. The prospective part of the study is ongoing. DISCUSSION: The ALS registry Swabia has been implemented successfully. In rare diseases such as ALS, the collaboration of registries, the comparison with external samples and biorepositories will facilitate to identify risk factors and to further explore the potential underlying pathophysiological mechanisms

    G-CSF Prevents the Progression of Structural Disintegration of White Matter Tracts in Amyotrophic Lateral Sclerosis: A Pilot Trial

    Get PDF
    Background: The hematopoietic protein Granulocyte-colony stimulating factor (G-CSF) has neuroprotective and regenerative properties. The G-CSF receptor is expressed by motoneurons, and G-CSF protects cultured motoneuronal cells from apoptosis. It therefore appears as an attractive and feasible drug candidate for the treatment of amyotrophic lateral sclerosis (ALS). The current pilot study was performed to determine whether treatment with G-CSF in ALS patients is feasible.Methods: Ten patients with definite ALS were entered into a double-blind, placebo-controlled, randomized trial. Patients received either 10 mu g/kg BW G-CSF or placebo subcutaneously for the first 10 days and from day 20 to 25 of the study. Clinical outcome was assessed by changes in the ALS functional rating scale (ALSFRS), a comprehensive neuropsychological test battery, and by examining hand activities of daily living over the course of the study (100 days). The total number of adverse events (AE) and treatment-related AEs, discontinuation due to treatment-related AEs, laboratory parameters including leukocyte, erythrocyte, and platelet count, as well as vital signs were examined as safety endpoints. Furthermore, we explored potential effects of G-CSF on structural cerebral abnormalities on the basis of voxel-wise statistics of Diffusion Tensor Imaging (DTI), brain volumetry, and voxel-based morphometry.Results: Treatment was well-tolerated. No significant differences were found between groups in clinical tests and brain volumetry from baseline to day 100. However, DTI analysis revealed significant reductions of fractional anisotropy (FA) encompassing diffuse areas of the brain when patients were compared to controls. On longitudinal analysis, the placebo group showed significant greater and more widespread decline in FA than the ALS patients treated with G-CSF.Conclusions: Subcutaneous G-CSF treatment in ALS patients appears as feasible approach. Although exploratory analysis of clinical data showed no significant effect, DTI measurements suggest that the widespread and progressive microstructural neural damage in ALS can be modulated by G-CSF treatment. These findings may carry significant implications for further clinical trials on ALS using growth factors

    Latent cluster analysis of ALS phenotypes identifies prognostically differing groups

    Get PDF
    BACKGROUND Amyotrophic lateral sclerosis (ALS) is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes. METHODS Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method. RESULTS The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001). Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb) and time from symptom onset to diagnosis (p<0.00001). CONCLUSION The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research

    Assessing behavioural changes in ALS: cross-validation of ALS-specific measures

    Get PDF
    Objective: The Beaumont Behavioural Inventory (BBI) is a behavioural proxy report for the assessment of behavioural changes in ALS. This tool has been validated against the FrSBe, a non-ALS specific behavioural assessment, and further comparison of the BBI against a disease-specific tool was considered. This study cross-validates the BBI against the ALS-FTD-Q. Methods: 60 ALS patients, 8% also meeting criteria for FTD, were recruited. All patients were evaluated using the BBI and the ALS-FTD-Q, completed by a carer. Correlational analysis was performed to assess construct validity. Precision, sensitivity, specificity and overall accuracy of the BBI, when compared to the ALS-FTD-Q, were obtained. Results: The mean score of the whole sample on the BBI was 11.45±13.06. ALS-FTD patients scored significantly higher than non-demented ALS patients (31.6±14.64, 9.62±11.38; p<.0001). A significant large positive correlation between the BBI and the ALS-FTD-Q was observed (r=.807, p<.0001), and no significant correlations between the BBI and other clinical/demographic characteristics, indicating good convergent and discriminant validity, respectively. 72% of overall concordance was observed. Precision, sensitivity and specificity for the classification of severely impaired patients were adequate. However, lower concordance in the classification of mild behavioural changes was observed, with higher sensitivity using the BBI, most likely secondary to BBI items which endorsed behavioural aspects not measured by the ALS-FTD-Q. Discussion: Good construct validity has been further confirmed when the BBI is compared to an ALS-specific tool. Furthermore, the BBI is a more comprehensive behavioural assessment for ALS, as it measures the whole behavioural spectrum in this condition

    An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints

    Get PDF
    In this work, we introduce an algorithm to compute the derivatives of physical observables along the constrained subspace when flexible constraints are imposed on the system (i.e., constraints in which the hard coordinates are fixed to configuration-dependent values). The presented scheme is exact, it does not contain any tunable parameter, and it only requires the calculation and inversion of a sub-block of the Hessian matrix of second derivatives of the function through which the constraints are defined. We also present a practical application to the case in which the sought observables are the Euclidean coordinates of complex molecular systems, and the function whose minimization defines the constraints is the potential energy. Finally, and in order to validate the method, which, as far as we are aware, is the first of its kind in the literature, we compare it to the natural and straightforward finite-differences approach in three molecules of biological relevance: methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio

    Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease characterized by the selective death of motor neurons in the motor cortex, brain stem and spinal cord. Recently, missense variants in the angiogenin gene (ANG), an angiogenic factor expressed in ventral horn motor neurons that is up-regulated by hypoxia, have been found in ALS patients of Irish/Scottish, North American, Italian, French and Dutch descent. To investigate the role of ANG in the German population, we screened for mutations by sequencing the entire coding region of the ANG gene in a large sample of 581 German ALS cases and 616 sex- and age-matched healthy controls. We identified two heterozygous missense variants, F(−13)L and K54E, in two German sporadic ALS cases but not in controls. Both missense variants are novel and have not been previously found in ALS cases. Our results suggest that missense variants in the ANG gene play a role in ALS in the German population and provide further evidence to support the hypothesis that angiogenic factors up-regulated by hypoxia are involved in the pathophysiology of ALS
    • 

    corecore