120 research outputs found

    New insights on the selective oxidation of methanol to formaldehyde on FeMo based catalysts

    Get PDF
    The selective oxidation of methanol has been studied in detail, with particular focus on gaining insights into the surface active sights responsible for directing the selectivity to formaldehyde. Various Fe and Mo containing oxides have been investigated for their reactivity with methanol, to gain an understanding of the different roles of these components in the industrial catalyst employed, which is a mixed phase comprised of MoO3 and Fe2(MoO4)3. Catalysts have primarily been tested through using TPD (temperature programmed desorption) and TPPFR (temperature programmed pulsed flow reaction). The reactivity of Fe2O3 is dominated by combustion products, with CO2 and H2 produced via a formate intermediate adsorbing at the catalyst surface. For MoO3 however, the surface is populated by methoxy intermediates, so that the selectivity is almost 100 % directed to formaldehyde. When a mixture of isolated Fe and Mo sites co-exist, the surface methoxy becomes stabilised, resulting in a dehydrogenation reaction to CO and H2. CO and CO2 can also be observed on Mo rich surfaces, however here a consequence of the further oxidation of formaldehyde, through a linear pathway. TPD and DRIFTS identify these intermediates and products forming. Since the structure of the industrial catalyst is relatively complex, in that it contains both MoO3 and Fe2(MoO4)3, it is difficult to identify the active site for the reaction with methanol. A novel approach to understanding this further, has involved the synthesis of a series of MoOx modified Fe2O3 catalysts in an attempt to make core-shell oxidic materials of the type MoOx/Fe2O3. Various monolayer loadings are investigated. It is conclusively shown that for all coverages the Mo stays in the surface region, even after annealing to high temperatures, only reacting with the iron oxide surface when the material is annealed above 400 ̊ C. From drying at 120 ̊ C to calcining at 500 ̊ C, the Mo converts from a MoO3-like octahedral layer to Fe2(MoO4)3, with Mo in a tetrahedral structure. Although changes in the Mo phase are clearly evident, it is shown that for all catalysts a one monolayer equivalent of amorphous octahedral MoOx also remains at the surface, regardless of the calcination temperature employed. It is this layer which is deemed as the surface active layer, since all catalysts at varying monolayer overages and anneal temperatures show a similar reaction with methanol. This overlayer is unique, and is suggested to be comparable to the surface terminating layer in bulk catalysts such as Fe2(MoO4)3. Successive work involved studying the reactivity of this upper layer, with suggestions of a two site Mo-Mo surface species forming on adsorption of methanol. Concluding work involves an investigation into the redox properties of Fe2(MoO4)3, to address the significance of this mixed oxide in commercial materials. Fe2(MoO4)3 forms the majority of the industrial catalyst, and although it shows a superior performance in terms of its activity, it cannot compete with the near 100 % selectivity of MoO3 to formaldehyde. Other supports have been trialled for their performance under reaction with methanol. It is shown that Fe2(MoO4)3 has increased bulk lattice oxygen mobility. Under normal reaction conditions, the reaction is carried out aerobically. However if oxygen supplies are restricted, Fe2(MoO4)3 is able to demonstrate a satisfactory performance above 300 ̊ C, as lattice oxygen is able to replace lost surface oxygen. This can continue for some time, until reduced phases containing Mo(IV) form. At this point formaldehyde selectivity drops, matched by a rise in CO production. High oxidation states are crucial to catalyst performance, with the reaction continuously cycling between Mo(VI) and Mo(VI), with a very short lifetime for the Mo(IV) species

    Pd/ZnO catalysts for direct CO2 hydrogenation to methanol

    Get PDF
    The direct hydrogenation of CO2 into methanol is crucial for providing a means of CO2 fixation and a way to store cleanly produced hydrogen in a more energy-dense and transportable form. Here we have prepared two series of Pd/ZnO catalysts, both by immobilisation of PVA-protected Pd colloids and by Pd impregnation of PdCl2 to investigate structure activity relationships for direct CO2 hydrogenation. Very different performances were found for the different preparation methods, and the Pd loading and pre-reduction of the catalysts were shown to be important factors for optimising methanol yield. The crucial factor for high methanol yield is the formation of a Pd–Zn alloy, either during the reaction itself, or better by high temperature pre-reduction. The formation of the alloy greatly reduces CO production by the reverse water gas shift reaction. The catalysts prepared by sol-immobilisation were relatively stable to thermal treatment. In contrast, the impregnated catalysts were much less thermally stable, due to the presence of remnant chloride on the surface of the catalyst, which was absent for the case of sol immobilisation preparation. The results illustrate the importance of controlling the PdZn particle size and its surface structure for the catalysts to achieve high methanol selectivity (60%, the rest being CO) and conversion (11%) at 250 °C and 20 bar. Selectivity for sol-immobilised catalysts decreases from 60% at 3 nm average diameter, to 20% at 7 nm

    Selectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdate

    Get PDF
    Evolution of the IRAS spectrum with temperature after adsorbing methanol at room temperature. The bands at 2930 and 2820 cm− 1 are due to the methoxy species C–H stretches, while that at 2870 is due to the formate. Here, we report a simple, quantitative model to describe the behaviour of bi-cationic oxide catalysts, in terms of selectivity variation as a function of increased loading of one cation into a sample of the other. We consider its application to a particular catalytic system, namely the selective oxidation of methanol, which proceeds with three main C1 products, namely CO2, CO, and H2CO. The product selectivity varies in this order as Mo is added in increasing amounts to an iron oxide catalyst, and the product selectivity is determined by the distribution of dual sites and single sites of each species

    Correction: In situ spectroscopic investigations of MoOx/Fe2O3 catalysts for the selective oxidation of methanol

    Get PDF
    Correction for ‘In situ spectroscopic investigations of MoOx/Fe2O3 catalysts for the selective oxidation of methanol’ by Catherine Brookes et al., Catal. Sci. Technol., 2016, 6, 722–730.</p

    In situ spectroscopic investigations of MoOx/Fe2O3 catalysts for the selective oxidation of methanol

    Get PDF
    Multicomponent oxide shell@core catalysts have been prepared, affording overlayers of MoOx on Fe2O3. This design approach allows bulk characterization techniques, such as X-ray Absorption Fine Structure (XAFS), to provide surface sensitive information. Coupling this approach with in situ methodologies provides insights during crucial catalytic processes. Calcination studies were followed by a combination of XAFS and Raman, and demonstrate that amorphous multi-layers of MoOx are first converted to MoO3 before formation of Fe2(MoO4)3. However, a single overlayer of Oh Mo units remains at the surface at all times. In situ catalysis studies during formaldehyde production identified that Mo6+ was present throughout, confirming that gas phase oxygen transfer to molybdenum is rapid under reaction conditions. Reduction studies in the presence of MeOH resulted in the formation of reduced Mo–Mo clusters with a bonding distance of 2.6 Å. It is proposed that the presence of the clusters indicates that the selective conversion of MeOH to formaldehyde requires multiple Mo sites

    The surface of iron molybdate catalysts used for the selective oxidation of methanol

    Get PDF
    The oxidation of methanol to formaldehyde is a major chemical process carried out catalytically and iron molybdate is one of the major catalysts for this process. In this paper we explore the nature of the active and selective surfaces of iron molybdate catalysts and show that the effective catalysts comprise molybdenum rich surfaces. We conclude that it is therefore important to maximise the surface area of these active catalysts and to this end we have studied catalysts made using a new physical grinding method with oxalic acid. For super-stoichiometric materials (Fe:Mo = 1:2.2) the reaction data show that physical mixing produces effective catalysts, possibly offering an improvement over the conventional co-precipitation method

    Quantifying the core deficit in classical schizophrenia

    Get PDF
    In the classical descriptions of schizophrenia, Kraepelin and Bleuler recognised disorganization and impoverishment of mental activity as fundamental symptoms. Their classical descriptions also included a tendency to persisting disability. The psychopathological processes underlying persisting disability in schizophrenia remain poorly understood. The delineation of a core deficit underlying persisting disability would be of value in predicting outcome and enhancing treatment. We tested the hypothesis that mental disorganization and impoverishment are associated with persisting impairments of cognition and role-function, and together reflect a latent core deficit that is discernible in cases diagnosed by modern criteria. We used Confirmatory Factor Analysis to determine whether measures of disorganisation, mental impoverishment, impaired cognition and role functioning in 40 patients with schizophrenia represent a single latent variable. Disorganization scores were computed from the variance shared between disorganization measures from three commonly used symptom scales. Mental impoverishment scores were computed similarly. A single factor model exhibited a good fit, supporting the hypothesis that these measures reflect a core deficit.Persisting brain disorders are associated with a reduction in Post Motor Beta Rebound (PMBR), the characteristic increase in electrophysiological beta amplitude that follows a motor response. Patients had significantly reduced PMBR compared with healthy controls. PMBR was negatively correlated with core deficit score.While the symptoms constituting impoverished and disorganised mental activity are dissociable in schizophrenia, nonetheless, the variance that these two symptom domains share with impaired cognition and role function, appears to reflect a pathophysiological process that might be described as the core deficit of classical schizophrenia

    Tissue distribution of angiotensin-converting enzyme 2 (ACE2) receptor in wild animals with a focus on artiodactyls, mustelids and phocids

    Get PDF
    Natural cases of zooanthroponotic transmission of SARS-CoV-2 to animals have been reported during the COVID-19 pandemic, including to free-ranging white-tailed deer (Odocoileus virginianus) in North America and farmed American mink (Neovison vison) on multiple continents. To understand the potential for angiotensin-converting enzyme 2 (ACE2)-mediated viral tropism we characterised the distribution of ACE2 receptors in the respiratory and intestinal tissues of a selection of wild and semi-domesticated mammals including artiodactyls (cervids, bovids, camelids, suids and hippopotamus), mustelid and phocid species using immunohistochemistry. Expression of the ACE2 receptor was detected in the bronchial or bronchiolar epithelium of several European and Asiatic deer species, Bactrian camel (Camelus bactrianus), European badger (Meles meles), stoat (Mustela erminea), hippopotamus (Hippopotamus amphibious), harbor seal (Phoca vitulina), and hooded seal (Cystophora cristata). Further receptor mapping in the nasal turbinates and trachea revealed sparse ACE2 receptor expression in the mucosal epithelial cells and occasional occurrence in the submucosal glandular epithelium of Western roe deer (Capreolus capreolus), moose (Alces alces alces), and alpaca (Vicunga pacos). Only the European badger and stoat expressed high levels of ACE2 receptor in the nasal mucosal epithelium, which could suggest high susceptibility to ACE2-mediated respiratory infection. Expression of ACE2 receptor in the intestinal cells was ubiquitous across multiple taxa examined. Our results demonstrate the potential for ACE2-mediated viral infection in a selection of wild mammals and highlight the intra-taxon variability of ACE2 receptor expression, which might influence host susceptibility and infection

    Patient experience and reflective learning (PEARL): a mixed methods protocol for staff insight development in acute and intensive care medicine in the UK

    Get PDF
    INTRODUCTION: Patient and staff experiences are strongly influenced by attitudes and behaviours, and provide important insights into care quality. Patient and staff feedback could be used more effectively to enhance behaviours and improve care through systematic integration with techniques for reflective learning. We aim to develop a reflective learning framework and toolkit for healthcare staff to improve patient, family and staff experience. METHODS & ANALYSIS: Local project teams including staff and patients from the acute medical units (AMUs) and intensive care units (ICUs) of three National Health Service trusts will implement two experience surveys derived from existing instruments: a continuous patient and relative survey and an annual staff survey. Survey data will be supplemented by ethnographic interviews and observations in the workplace to evaluate barriers to and facilitators of reflective learning. Using facilitated iterative co-design, local project teams will supplement survey data with their experiences of healthcare to identify events, actions, activities and interventions which promote personal insight and empathy through reflective learning. Outputs will be collated by the central project team to develop a reflective learning framework and toolkit which will be fed back to the local groups for review, refinement and piloting. The development process will be mapped to a conceptual theory of reflective learning which combines psychological and pedagogical theories of learning, alongside theories of behaviour change based on capability, opportunity and motivation influencing behaviour. The output will be a locally-adaptable workplace-based toolkit providing guidance on using reflective learning to incorporate patient and staff experience in routine clinical activities. ETHICS & DISSEMINATION: The PEARL project has received ethics approval from the London Brent Research Ethics Committee (REC Ref 16/LO/224). We propose a national cluster randomised step-wedge trial of the toolkit developed for large-scale evaluation of impact on patient outcomes
    corecore