7,159 research outputs found

    The 3.4 micron emission in comets

    Get PDF
    Emission features near 3.4 microns were detected in comet Bradfield (1987s) on 17 Nov. 1987 UT, and, marginally, on two earlier dates, with the Cooled Grating Array Spectrometer at the NASA Infrared Radio Telescope Facility (IRTF) (Brooke et al., 1988b). The central wavelength (3.36 microns) and width (approx. 0.15 microns) of the strongest feature coincide with those observed in comet Halley. A weaker emission feature at 3.52 microns and a strong feature extending shortward of 2.9 microns were also detected. This brings the number of comets in which these three features have been seen to three, two new (Bradfield, Wilson) and one old (Halley). It seems almost certain that the 3.4 micron features are emissions by C-H groups in complex molecules. Based on the similarity of the 3.4 micron features in comets Halley and Wilson, the authors suggest that a particular set of organic compounds may be common to all comets (Brooke et al. 1988a). The absence of the feature in some comets could then be due to photodestruction or evaporation of the organics when the comet approaches the sun, in combination with a predominance of thermal emission from non C-H emitting grains. Detection of the 3.4 micron emission feature in comet Bradfield at 4 = 0.9 AU provides support for this argument. Complex organics in comets could have been formed by particle irradiation of parent ices in the nucleus or been incorporated as grains at the time the comets formed. Since the most heavily irradiated layers of Halley would have been lost in its hundreds of perihelion passages, the authors believe the more likely explanation is that the 3.4 micron emitting material was incorporated in comet nuclei at the time of formation. The 3.4 micron comet feature resembles, but is not identical to, the interstellar 3.29 micron (and longer wavelength) emission features and the broad 3.4 micron feature seen in absorption toward the Galactic center. Detailed comparisons of cometary and interstellar organics will require comet spectra with signal-to-noise and spectral resolution comparable to that available in spectra of the interstellar medium. Such observations are currently being planned

    History Dependent Phenomena in the Transverse Ising Ferroglass: the Free Energy Landscape

    Get PDF
    In this paper we investigate the relationship between glassy and ferromagnetic phases in disordered Ising ferromagnets in the presence of transverse magnetic fields, Γ\Gamma. Iterative mean field simulations probe the free energy landscape and suggest the existence of a glass transition as a function of Γ\Gamma which is distinct from the Curie temperature. New experimental field-cooled and zero-field-cooled data on LiHox_xY1x_{1-x}F4_4 provide support for our theoretical picture.Comment: 4 pages RevTex; 5 figure

    Perspectives: Quantum Mechanics on Phase Space

    Full text link
    The basic ideas in the theory of quantum mechanics on phase space are illustrated through an introduction of generalities, which seem to underlie most if not all such formulations and follow with examples taken primarily from kinematical particle model descriptions exhibiting either Galileian or Lorentzian symmetry. The structures of fundamental importance are the relevant (Lie) groups of symmetries and their homogeneous (and associated) spaces that, in the situations of interest, also possess Hamiltonian structures. Comments are made on the relation between the theory outlined and a recent paper by Carmeli, Cassinelli, Toigo, and Vacchini.Comment: "Quantum Structures 2004" - Meeting of the International Quantum Structures Association; Denver, Colorado; 17-22 July, 200

    Panchromatic observations and modeling of the HV Tau C edge-on disk

    Get PDF
    We present new high spatial resolution (<~ 0.1") 1-5 micron adaptive optics images, interferometric 1.3 mm continuum and 12CO 2-1 maps, and 350 micron, 2.8 and 3.3 mm fluxes measurements of the HV Tau system. Our adaptive optics images reveal an unusually slow orbital motion within the tight HV Tau AB pair that suggests a highly eccentric orbit and/or a large deprojected physical separation. Scattered light images of the HV Tau C edge-on protoplanetary disk suggest that the anisotropy of the dust scattering phase function is almost independent of wavelength from 0.8 to 5 micron, whereas the dust opacity decreases significantly over the same range. The images further reveal a marked lateral asymmetry in the disk that does not vary over a timescale of 2 years. We further detect a radial velocity gradient in the disk in our 12CO map that lies along the same position angle as the elongation of the continuum emission, which is consistent with Keplerian rotation around an 0.5-1 Msun central star, suggesting that it could be the most massive component in the triple system. We use a powerful radiative transfer model to compute synthetic disk observations and use a Bayesian inference method to extract constraints on the disk properties. Each individual image, as well as the spectral energy distribution, of HV Tau C can be well reproduced by our models with fully mixed dust provided grain growth has already produced larger-than-interstellar dust grains. However, no single model can satisfactorily simultaneously account for all observations. We suggest that future attempts to model this source include more complex dust properties and possibly vertical stratification. (Abridged)Comment: 26 pages, 11 figures, editorially accepted for publication in Ap

    A New 3.25 Micron Absorption Feature toward Mon R2/IRS-3

    Get PDF
    A new 3.2--3.5~μ\mum spectrum of the protostar Mon~R2/IRS-3 confirms our previous tentative detection of a new absorption feature near 3.25 μ\mum. The feature in our new spectrum has a central wavelength of 3.256 μ\mum (3071 cm1^{-1}) and has a full-width at half maximum of 0.079 μ\mum (75 cm1^{-1}). We explore a possible identification with aromatic hydrocarbons at low temperatures, which absorb at a similar wavelength. If the feature is due to aromatics, the derived column density of C--H bonds is \sim1.8 ×\times 101810^{18} cm2^{-2}. If the absorbing aromatic molecules are of roughly the same size as those responsible for aromatic emission features in the interstellar medium, then we estimate that \sim9\% of the cosmic abundance of carbon along this line of sight would be in aromatic hydrocarbons, in agreement with abundance estimates from emission features.Comment: 12 pages (26 kB), AASTex format. Also 1 Postscript figure (39 kB), tarred, compressed and uuencoded, added with 'figure' command. Postscript file or hardcopy available upon request to [email protected]. ApJL, in pres

    Dissipative effects on quantum glassy systems

    Full text link
    We discuss the behavior of a quantum glassy system coupled to a bath of quantum oscillators. We show that the system localizes in the absence of interactions when coupled to a subOhmic bath. When interactions are switched on localization disappears and the system undergoes a phase transition towards a glassy phase. We show that the position of the critical line separating the disordered and the ordered phases strongly depends on the coupling to the bath. For a given type of bath, the ordered glassy phase is favored by a stronger coupling. Ohmic, subOhmic and superOhmic baths lead to different transition lines. We draw our conclusions from the analysis of the partition function using the replicated imaginary-time formalism and from the study of the real-time dynamics of the coupled system using the Schwinger-Keldysh closed time-path formalism.Comment: 39 pages, 13 figures, RevTe

    The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. I. Chamaeleon II Observed with MIPS

    Full text link
    We present maps of over 1.5 square degrees in Chamaeleon (Cha) II at 24, 70, and 160 micron observed with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS) and a 1.2 square degree millimeter map from SIMBA on the Swedish-ESO Submillimetre Telescope (SEST). The c2d Spitzer Legacy Team's data reduction pipeline is described in detail. Over 1500 24 micron sources and 41 70 micron sources were detected by MIPS with fluxes greater than 10-sigma. More than 40 potential YSOs are identified with a MIPS and 2MASS color-color diagram and by their spectral indices, including two previously unknown sources with 24 micron excesses. Our new SIMBA millimeter map of Cha II shows that only a small fraction of the gas is in compact structures with high column densities. The extended emission seen by MIPS is compared with previous CO observations. Some selected interesting sources, including two detected at 1 mm, associated with Cha II are discussed in detail and their SEDs presented. The classification of these sources using MIPS data is found to be consistent with previous studies.Comment: 44 pages, 12 figures (1 color), to be published in Ap

    Quantum TAP equations

    Full text link
    We derive Thouless-Anderson-Palmer (TAP) equations for quantum disordered systems. We apply them to the study of the paramagnetic and glassy phases in the quantum version of the spherical p spin-glass model. We generalize several useful quantities (complexity, threshold level, etc.) and various ideas (configurational entropy crisis, etc), that have been developed within the classical TAP approach, to quantum systems. The analysis of the quantum TAP equations allows us to show that the phase diagram (temperature-quantum parameter) of the p spin-glass model should be generic. In particular, we argue that a crossover from a second order thermodynamic transition close to the classical critical point to a first order thermodynamic transition close to the quantum critical point is to be expected in a large class of systems.Comment: 29 pages, 4 fi
    corecore