48 research outputs found

    Historic emissions from deforestation and forest degradation in Mato Grosso, Brazil: 1) source data uncertainties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from credited mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008.</p> <p>Results</p> <p>Deforestation estimates showed good agreement for multi-year periods of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by > 20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C ha<sup>-1</sup>, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas.</p> <p>Conclusions</p> <p>Estimates of source data uncertainties are essential for REDD+. Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions.</p

    Delayed impact of natural climate solutions

    Get PDF
    Acknowledgement: This work was supported by the National Basic Research Program of China (2016YFA0602701), the National Natural Science Foundation of China (41975113; 91937302), and the Guangdong Provincial Department of Science and Technology (2019ZT08G090). We appreciate the support from the China Association for Science and Technology Working Group for UN Environment Consultation. The authors declare no conflict of interests.Peer reviewedPostprin

    Natural climate solutions

    Get PDF
    Our thanks for inputs by L. Almond, A. Baccini, A. Bowman, S. CookPatton, J. Evans, K. Holl, R. Lalasz, A. Nassikas, M. Spalding, M. Wolosin, and expert elicitation respondents. Our thanks for datasets developed by the Hansen lab and the NESCent grasslands working group (C. Lehmann, D. Griffith, T. M. Anderson, D. J. Beerling, W. Bond, E. Denton, E. Edwards, E. Forrestel, D. Fox, W. Hoffmann, R. Hyde, T. Kluyver, L. Mucina, B. Passey, S. Pau, J. Ratnam, N. Salamin, B. Santini, K. Simpson, M. Smith, B. Spriggs, C. Still, C. Strömberg, and C. P. Osborne). This study was made possible by funding from the Doris Duke Charitable Foundation. Woodbury was supported in part by USDA-NIFA Project 2011-67003-30205 Data deposition: A global spatial dataset of reforestation opportunities has been deposited on Zenodo (https://zenodo.org/record/883444). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710465114/-/DCSupplemental.Peer reviewedPublisher PD

    Contribution of the land sector to a 1.5 °C world

    Get PDF
    Acknowledgements The analysis in this study was guided by the valuable feedback and recommendations of expert consultations and interviews, and we extend our gratitude to all those individuals who contributed to our research and analysis: Jeff Atkins (Virginia Commonwealth University), Jonah Busch (Earth Innovation Institute), Peter Ellis (The Nature Conservancy), Jason Funk (Center for Carbon Removal), Trisha Gopalakrishna (The Nature Conservancy), Alan Kroeger (Climate Focus), Bernice Lee (Chatham House), Donna Lee (Climate and Land Use Alliance), Simon Lewis (University College London), Guy Lomax (The Nature Conservancy), Dann Mitchell (University of Bristol), Raoni Rajão (University of Minas Gerais), Joeri Rogelj (IIASA), Carl-Friedrich Schleussner (Climate Analytics), Paul West (University of Minnesota), Graham Wynne (Prince of Wales International Sustainability Unit), Ana Yang (Children’s Investment Fund Foundation) and Dan Zarin (Climate and Land Use Alliance). A special thank you to Esther Chak and Mary-Jo Valentino (Imaginary Office) for designing the figures in this study. This work was generously supported by the Children’s Investment Fund Foundation and the authors’ institutions and funding sources.Peer reviewedPostprin

    National mitigation potential from natural climate solutions in the tropics.

    Get PDF
    Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2°C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)-protection, improved management and restoration of ecosystems-to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO2e yr-1 at less than 100 US$ per Mg CO2e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'

    Land-based measures to mitigate climate change : potential and feasibility by country

    Get PDF
    Acknowledgements The design of this study and the data generated was guided by expert consultations and relied on the help of many. We thank all those who contributed: Sierra Gladfelter, Jo House, Mercedes Bustamante, Susan Cook-Patton, Sara Leavitt, Nick Wolff, and Thomas Worthington. We thank M.-J. Valentino at Imaginary Office for helping to design the first three figures. This work was supported by the authors’ institutions and funding sources, including the Climate and Land-use Alliance, the Dutch Ministry of Agriculture, Nature Management and Food Quality, and the EU H2020 projects VERIFY and ENGAGE (grant agreement no. 821471).Peer reviewedPublisher PD

    Natural climate solutions for the United States

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaat1869, doi:10.1126/sciadv.aat1869.Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)—21 conservation, restoration, and improved land management interventions on natural and agricultural lands—to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year−1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year−1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.This study was made possible by funding from the Doris Duke Charitable Foundation. C.A.W. and H.G. acknowledge financial support from NASA’s Carbon Monitoring System program (NNH14ZDA001N-CMS) under award NNX14AR39G. S.D.B. acknowledges support from the DOE’s Office of Biological and Environmental Research Program under the award DE-SC0014416. J.W.F. acknowledges financial support from the Florida Coastal Everglades Long-Term Ecological Research program under National Science Foundation grant no. DEB-1237517

    Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests

    Get PDF
    For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0-7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps
    corecore