43 research outputs found

    Ambipolar Blends of Cu-Phthalocyanine and Fullerene: Charge Carrier Mobility, Electronic Structure and their Implications for Solar Cell Applications

    Get PDF
    Summary: Ambipolar transport has been realised in blends of the molecular hole conductor Cu-phthalocyanine (CuPc) and the electron conducting fullerene C 60 . Charge carrier mobilities and the occupied electronic levels have been analyzed as a function of the mixing ratio using field-effect transistor measurements and photoelectron spectroscopy. These results are discussed in the context of photovoltaic cells based on these materials

    Digital dynamic frequency dividers for broad band application up to 60 GHz

    Get PDF
    A broadband dynamic frequency divider based on pseudomorphic Al0.2Ga0.8As/In0.25Ga0.75As MODFETs and passive loads is presented. Stable operation from 28 GHz up to 51 GHz with a power consumption of 440 mW could be shown. SPICE network simulation predicts operation in the 35 GHz - 60 GHz range for a divider circuit using an advanced E/D AlGaAs/InGaAs MODFET process

    18 Gbit/s monolithically integrated 2:1 multiplexer and laser driving using 0.3 μm gate length quantum well HEMTs

    Get PDF
    A monolithically integrated 2:1 multiplexer and laser diode driver was developed, using AlGaAs quantum well HEMTs of 0.3 μm gate length. The DC and modulation current is 25 and 45 mA, respectively. Open eye diagrams were measured at bit rates up to 18 Gbit/s with pseudorandom data streams

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore