112 research outputs found
The diversity of population responses to environmental change
The current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct
Aging and Its Demographic Measurement
This case study highlights the general issues raised earlier. First, that maximum lifespan is not an easily obtainable metric. Specifically, it is unambiguous in the sense that once the last animal dies, it is most definitely dead. But to estimate the variance in maximum lifespan, many replicate populations would need to be followed for each treatment group (with each replicate providing a single observation of maximum lifespan). Second, median lifespan, although measurable from a single population, provides no information on the age-specificity and patterns in age-specific vital rates that are contributing to differences in "aging" (i.e., differences in physiological frailty and rates of increasing mortality across the adult lifespan). Finally, our partitioning of aging into two components — IMR and RoA — allows us to unravel causation in a demographic sense. Specifically, it allows us to specify an aging rate that is separate from its starting value (IMR), independent of fluctuations in survival due to temporary experimental impacts, and not necessarily equivalent to expectations due to median or maximum lifespan
Gene Expression of Components of the Insulin/Insulin-Like Signaling Pathway in Response to Heat Stress in the Garter Snake, \u3ci\u3eThamnophis Elegans\u3c/i\u3e
The insulin/insulin-like signaling (IIS) pathway is an evolutionary conserved molecular signaling pathway that regulates growth, reproduction, stress resistance, and longevity in response to nutrition and external stress. While the constituents of this pathway and their functions are relatively well understood in laboratory model animals, they have not been explored in many other organisms, with notable exceptions in the fisheries literature. We tested for the gene expression of four key components of this pathway in the garter snake (Thamnophis elegans) liver, and determine how the transcription of these components responds to heat stress. We found that the two insulin-like growth factor ligands (IGF-1 and IGF-2) and the receptors (IGF-1 Receptor and M6P/ IGF-2 Receptor, or IGF-1R and IGF-2R) are expressed in garter snake liver tissue. Under normal laboratory conditions, IGF-2 and IGF-2R are expressed at a higher level than IGF-1 and IGF-1R. In response to heat stress, IGF-1 expression remained the same, IGF-2 expression decreased, and the expression of both receptors increased. These results demonstrate that elements of the IIS pathway are responsive to heat stress in snakes. Further studies are needed to fully understand the biological consequences of this response
Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework
At a recent symposium on aging biology, a debate was held as to whether or not we know what biological aging is. Most of the participants were struck not only by the lack of consensus on this core question, but also on many basic tenets of the field. Accordingly, we undertook a systematic survey of our 71 participants on key questions that were raised during the debate and symposium, eliciting 37 responses. The results confirmed the impression from the symposium: there is marked disagreement on the most fundamental questions in the field, and little consensus on anything other than the heterogeneous nature of aging processes. Areas of major disagreement included what participants viewed as the essence of aging, when it begins, whether aging is programmed or not, whether we currently have a good understanding of aging mechanisms, whether aging is or will be quantifiable, whether aging will be treatable, and whether many non-aging species exist. These disagreements lay bare the urgent need for a more unified and cross-disciplinary paradigm in the biology of aging that will clarify both areas of agreement and disagreement, allowing research to proceed more efficiently. We suggest directions to encourage the emergence of such a paradigm
Recommended from our members
A Proposal to Sequence the Genome of a Garter Snake (Thamnophis sirtalis)
Here we develop an argument in support of sequencing a garter snake (Thamnophis sirtalis) genome, and outline a plan to accomplish this. This snake is a common, widespread, nonvenomous North American species that has served as a model for diverse studies in evolutionary biology, physiology, genomics, behavior and coevolution. The anole lizard is currently the only genome sequence available for a non-avian reptile. Thus, the garter snake at this time would be the first available snake genome sequence and as such would provide much needed comparative representation of non-avian reptilian genomes, and would also allow critical new insights for vertebrate comparative genomic studies. We outline the major areas of discovery that the availability of the garter snake genome would enable, and describe a plan for whole-genome sequencing.Organismic and Evolutionary Biolog
Sex-specific Aging in Animals: Perspective and Future Directions
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs
Sex-specific aging in animals: Perspective and future directions
Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age‐associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer‐lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well‐characterized processes. In particular, understanding the role of sex‐determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs
- …