51 research outputs found

    Possibility of quantitative T2-mapping MRI of cartilage near metal in high tibial osteotomy: A human cadaver study

    Get PDF
    T2-mapping is a widely used quantitative MRI technique in osteoarthritis research. An important challenge for its application in the context of high tibial osteotomy (HTO) is the presence of metallic fixation devices. In this study, we evaluated the possibility of performing T2-mapping after a HTO, by assessing the extent of magnetic susceptibility artifacts and the influence on T2 relaxation times caused by two commonly used fixation devices. T2-mapping with a 3D fast spin-echo sequence at three Tesla was performed on 11 human cadaveric knee joints before and after implantation of a titanium plate and screws (n = 5) or cobalt chrome staples (n = 6). Mean T2 relaxation times were calculated in six cartila

    Cerebral cortical microinfarcts in patients with internal carotid artery occlusion

    Get PDF
    Cerebral cortical microinfarcts (CMI) are small ischemic lesions that are associated with cognitive impairment and probably have multiple etiologies. Cerebral hypoperfusion has been proposed as a causal factor. We studied CMI in patients with internal carotid artery (ICA) occlusion, as a model for cerebral hemodynamic compromise. We included 95 patients with a complete ICA occlusion (age 66.2 +/- 8.3, 22% female) and 125 reference participants (age 65.5 +/- 7.4, 47% female). Participants underwent clinical, neuropsychological, and 3 T brain MRI assessment. CMI were more common in patients with an ICA occlusion (54%, median 2, range 1-33) than in the reference group (6%, median 0; range 1-7; OR 14.3; 95% CI 6.2-33.1; p<.001). CMI were more common ipsilateral to the occlusion than in the contralateral hemisphere (median 2 and 0 respectively; p<.001). In patients with CMI compared to patients without CMI, the number of additional occluded or stenosed cervical arteries was higher (p=.038), and cerebral blood flow was lower (B -6.2 ml/min/100 ml; 95% CI -12.0:-0.41; p=.036). In conclusion, CMI are common in patients with an ICA occlusion, particularly in the hemisphere of the occluded ICA. CMI burden was related to the severity of cervical arterial compromise, supporting a role of hemodynamics in CMI etiology.Cardiovascular Aspects of RadiologyNeuro Imaging Researc

    Early-stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI

    Get PDF
    Objective: To investigate arterial spin labeling (ASL)-MRI for the early diagnosis of and differentiation between the two most common types of presenile dementia: Alzheimer’s disease (AD) and frontotemporal dementia (FTD), and for distinguishing age-related from pathological perfusion changes. Methods: Thirteen AD and 19 FTD patients, and 25 age-matched older and 22 younger controls underwent 3D pseudo-continuous ASL-MRI at 3 T. Gray matter (GM) volume and cerebral blood flow (CBF), corrected for partial volume effects, were quantified in the entire supratentorial cortex and in 10 GM regions. Sensitivity, specificity and diagnostic performance were evaluated in regions showing significant CBF differences between patient groups or between patients and older controls. Results: AD compared with FTD patients had hypoperfusion in the posterior cingulate cortex,

    Exploring quantitative group-wise differentiation of Alzheimer's disease and behavioural variant frontotemporal dementia using tract-specific microstructural white matter and functional connectivity measures at multiple time points

    Get PDF
    Objectives This study explored group-wise quantitative measures of tract-specific white matter (WM) microstructure and functional default mode network (DMN) connectivity to establish an initial indication of their clinical applicability for early-stage and follow-up differential diagnosis of Alzheimer’s disease (AD) and behavioural variant frontotemporal dementia (bvFTD). Methods Eleven AD and 12 bvFTD early-stage patients and 18 controls underwent diffusion tensor imaging and resting state functional magnetic resonance imaging at 3 T. All AD and 6 bvFTD patients underwent the same protocol at 1-year follow-up. Functional connectivity measures of DMN and WM tract-specific diffusivity measures were determined for all groups. Exploratory analyses were performed to compare all measures between the three groups at baseline and between patients at follow-up. Additionally, the difference between baseline and follow-up diffusivity measures in AD and bvFTD patients was compared. Results Functional connectivity of the DMN was not different between groups at baseline and at follow-up. Diffusion abnormalities were observed widely in bvFTD and regionally in the hippocampal cingulum in AD. The extent of the differences between bvFTD and AD was diminished at follow-up, yet abnormalities were still more pronounced in bvFTD. The rate of change was similar in bvFTD and AD. Conclusions This study provides a tentative indication that quantitative tract-specific microstructural WM abnormalities, but not quantitative functional connectivity of the DMN, may aid early-stage and follow-up differential diagnosis of bvFTD and AD. Specifically, pronounced microstructural changes in anterior WM tracts may characterise bvFTD, whereas microstructural abnormalities of the hippocampal cingulum may characterise AD

    Qualitative Assessment of Longitudinal Changes in Phenocopy Frontotemporal Dementia

    Get PDF
    Phenocopy frontotemporal dementia (phFTD) shares core characteristics with behavioral variant frontotemporal dementia (bvFTD), yet without associated cognitive deficits and brain abnormalities on conventional magnetic resonance imaging (MRI), and without progression. Using advanced MRI techniques, we previously observed subtle structural and functional brain changes in phFTD similar to bvFTD. The aim of the current study was to follow these as well as cognition in phFTD over time, by means of a descriptive case series. Cognition, gray matter (GM) volume and white matter (WM) microstructure, and perfusion of 6 phFTD patients were qualitatively compared longitudinally (3-years follow-up), and cross-sectionally with baseline data from 9 bvFTD patients and 17 controls. For functional brain changes, arterial spin labeling (ASL) was performed to assess GM perfusion. For structural brain changes, diffusion tensor imaging was performed to assess WM microstructure and T1w imaging to assess GM volume. MRI acquisition was performed at 3T (General Electric, US). Clinical profiles of phFTD cases at follow-up are described. At follow-up phFTD patients showed clinical symptomatology similar to bvFTD, but had a relatively stable clinical profile. Longitudinal qualitative comparisons in phFTD showed some deterioration of language and memory function, a stable pattern of structural brain abnormalities and increased perfusion over time. Additionally, both baseline and follow-up cognitive scores and structural values in phFTD were generally in between those of controls and bvFTD. Although a descriptive case series does not allow for strong conclusions, these observations in a unique longitudinal phFTD patient cohort are suggestive of the notion that phFTD and bvFTD may belong to the same disease spectrum. They may also provide a basis for further longitudinal studies in phFTD, specifically exploring the structural vs. functional brain changes. Such studies are essential for improved insight, accurate diagnosis, and appropriate treatment of phFTD

    Analyzing the effect of APOE on Alzheimer's disease progression using an event-based model for stratified populations

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia and is phenotypically heterogeneous. APOE is a triallelic gene which correlates with phenotypic heterogeneity in AD. In this work, we determined the effect of APOE alleles on the disease progression timeline of AD using a discriminative event-based model (DEBM). Since DEBM is a data-driven model, stratification into smaller disease subgroups would lead to more inaccurate models as compared to fitting the model on the entire dataset. Hence our secondary aim is to propose and evaluate novel approaches in which we split the different steps of DEBM into group-aspecific and group-specific parts, where the entire dataset is used to train the group-aspecific parts and only the data from a specific group is used to train the group-specific parts of the DEBM. We performed simulation experiments to benchmark the accuracy of the proposed approaches and to select the optimal approach. Subsequently, the chosen approach was applied to the baseline data of 417 cognitively normal, 235 mild cognitively impaired who convert to AD within 3 years, and 342 AD patients from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset to gain new insights into the effect of APOE carriership on the disease progression timeline of AD. In the ε4 carrier group, the model predicted with high confidence that CSF Amyloidβ42 and the cognitive score of Alzheimer's Disease Assessment Scale (ADAS) are early biomarkers. Hippocampus was the earliest volumetric biomarker to become abnormal, closely followed by the CSF Phosphorylated Tau181 (PTAU) biomarker. In the homozygous ε3 carrier group, the model predicted a similar ordering among CSF biomarkers. However, the volume of the fusiform gyrus was identified as one of the earliest volumetric biomarker. While the findings in the ε4 carrier and the homozygous ε3 carrier groups fit the current understanding of progression of AD, the finding in the ε2 carrier group did not. The model predicted, with relatively low confidence, CSF Neurogranin as one of the earliest biomarkers along with cognitive score of Mini-Mental State Examination (MMSE). Amyloid β42 was found to become abnormal after PTAU. The presented models could aid understanding of the disease, and in selecting homogeneous group of presymptomatic subjects at-risk of developing symptoms for clinical trials

    Cerebral Perfusion and the Occurrence of Nonfocal Transient Neurological Attacks

    Get PDF
    INTRODUCTION: Nonfocal transient neurological attacks (TNAs) are associated with an increased risk of cardiac events, stroke and dementia. Their etiology is still unknown. Global cerebral hypoperfusion has been suggested to play a role in their etiology, but this has not been investigated. We assessed whether lower total brain perfusion is associated with a higher occurrence of TNAs. METHODS: Between 2015 and 2018, patients with heart failure were included in the Heart Brain Connection study. Patients underwent brain magnetic resonance imaging, including quantitative magnetic resonance angiography (QMRA) to measure cerebral blood flow (CBF). We calculated total brain perfusion of each participant by dividing total CBF by brain volume. Patients were interviewed with a standardized questionnaire on the occurrence of TNAs by physicians who were blinded to QMRA flow status. We assessed the relation between total brain perfusion and the occurrence of TNAs with Poisson regression analysis. RESULTS: Of 136 patients (mean age 70 years, 68% men), 29 (21%) experienced ≥1 TNAs. Nonrotatory dizziness was the most common subtype of TNA. Patients with TNAs were more often female and more often had angina pectoris than patients without TNAs, but total CBF and total brain perfusion were not different between both groups. Total brain perfusion was not associated with the occurrence of TNAs (adjusted risk ratio 1.12, 95% CI 0.88-1.42). CONCLUSION: We found no association between total brain perfusion and the occurrence of TNAs in patients with heart failure

    The Missing Link in the Pathophysiology of Vascular Cognitive Impairment: Design of the Heart-Brain Study

    Get PDF
    Background: Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that t

    Design of the ExCersion-VCI study: The effect of aerobic exercise on cerebral perfusion in patients with vascular cognitive impairment

    Get PDF
    There is evidence for a beneficial effect of aerobic exercise on cognition, but underlying mechanisms are unclear. In this study, we test the hypothesis that aerobic exercise increases cerebral blood flow (CBF) in patients with vascular cognitive impairment (VCI). This study is a multicenter single-blind randomized controlled trial among 80 patients with VCI. Most important inclusion criteria are a diagnosis of VCI with Mini-Mental State Examination ≥22 and Clinical Dementia Rating ≤0.5. Participants are randomized into an aerobic exercise group or a control group. The aerobic exercise program aims to improve cardiorespiratory fitness and takes 14 weeks, with a frequency of three times a week. Participants are provided with a bicycle ergometer at home. The control group receives two information meetings. Primary outcome measure is change in CBF. We expect this study to provide insight into the potential mechanism by which aerobic exercise improves hemodynamic status
    • …
    corecore