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Alzheimer’s disease (AD) is the most common form of dementia and is phenotypically heterogeneous. APOE is a
triallelic gene which correlates with phenotypic heterogeneity in AD. In this work, we determined the effect of
APOE alleles on the disease progression timeline of AD using a discriminative event-based model (DEBM). Since
DEBM is a data-driven model, stratification into smaller disease subgroups would lead to more inaccurate models
as compared to fitting the model on the entire dataset. Hence our secondary aim is to propose and evaluate novel
approaches in which we split the different steps of DEBM into group-aspecific and group-specific parts, where
the entire dataset is used to train the group-aspecific parts and only the data from a specific group is used to
train the group-specific parts of the DEBM. We performed simulation experiments to benchmark the accuracy of
the proposed approaches and to select the optimal approach. Subsequently, the chosen approach was applied to
the baseline data of 417 cognitively normal, 235 mild cognitively impaired who convert to AD within 3 years,
and 342 AD patients from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset to gain new insights
into the effect of APOE carriership on the disease progression timeline of AD. In the €4 carrier group, the model
predicted with high confidence that CSF Amyloidg,, and the cognitive score of Alzheimer’s Disease Assessment
Scale (ADAS) are early biomarkers. Hippocampus was the earliest volumetric biomarker to become abnormal,
closely followed by the CSF Phosphorylated Tau,q, (PTAU) biomarker. In the homozygous £3 carrier group, the
model predicted a similar ordering among CSF biomarkers. However, the volume of the fusiform gyrus was
identified as one of the earliest volumetric biomarker. While the findings in the €4 carrier and the homozygous
€3 carrier groups fit the current understanding of progression of AD, the finding in the €2 carrier group did not.
The model predicted, with relatively low confidence, CSF Neurogranin as one of the earliest biomarkers along
with cognitive score of Mini-Mental State Examination (MMSE). Amyloid p,, was found to become abnormal
after PTAU. The presented models could aid understanding of the disease, and in selecting homogeneous group
of presymptomatic subjects at-risk of developing symptoms for clinical trials.

1. Introduction of AD. Understanding the pathophysiological processes in AD is thus

crucial for selecting novel preventive or therapeutic targets for clinical

Dementia affects roughly 5% of the world’s elderly population of
whom 60 — 70% are affected by Alzheimer’s Disease (AD), which is the
most common form of dementia (Organization, 2017). There are several
neurobiological subtypes of AD (Ferreira et al., 2020) and each subtype
potentially needs a different strategy to prevent or slow the progression
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trials of disease modifying treatments, identifying target groups for such
trials and tracking the disease progression in patients.

While several studies have looked into the pathophysiology of
AD (Bloom, 2014; Jack Jr. et al., 2013; Weigand et al., 2019), it is
still not completely understood. Although it has been observed that AD
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report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement List.pdf
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Fig. 1. Overview of the steps involved in DEBM. Input for the DEBM model is a cross-sectional dataset X with M subjects and various biomarkers (A, B, C and D)
representing different aspects of neuro-degeneration. Using Gaussian mixture modeling (GMM), mixing parameters (6;) and probability density functions of normal
(p(x.;|-E))) and abnormal (p(x.,|E,)) levels are estimated for each biomarker. This is followed by the estimation of subject-specific orderings (s;), for each subject in
the dataset. Disease progression timeline consisting of central ordering (.5) and event-centers (1) are estimated based on these subject-specific orderings. Based on
the constructed disease progression timeline, patient stages (Y ;) of subjects in an independent test-set can be estimated.

is phenotypically heterogeneous (Au et al., 2015; Murray et al., 2011;
Patterson, 2018) with potentially different pathways for disease progres-
sion, these pathways remain unclear. There is hence a need to under-
stand the phenotypic heterogeneity in AD while leveraging neuroimag-
ing, fluid and cognitive biomarkers.

APOE is a triallelic gene in which the €2 allele reduces the risk of
AD (van der Lee et al., 2018), the £3 allele acts as a reference allele and
the ¢4 allele is a major genetic risk factor of AD (Genin et al., 2011; Kim
et al., 2009; Saunders et al., 1993). APOE has been shown to correlate
with phenotypic heterogeneity in AD (Weintraub et al., 2019). Hence we
hypothesize that the pathophysiology of AD can be better understood
when considering the effect of APOE carriership on biomarker changes.

In the context of data-driven methods for understanding AD patho-
physiology, disease progression models have been used to study the tra-
jectories of individual biomarkers (Jedynak et al., 2012; Lorenzi et al.,
2019; Schiratti et al., 2015) as well as their progression with respect to
each other (Fonteijn et al., 2012; Huang and Alexander, 2012; Venka-
traghavan et al., 2017; Young et al., 2014). Unlike typical machine
learning approaches, these models are interpretable by design and pro-
vide insight for understanding the mechanisms of disease progression.
Event-based models (EBMs) are a class of such interpretable disease pro-
gression models that estimate the timeline of neuropathologic change
during AD progression using cross-sectional data (Fonteijn et al., 2012;
Venkatraghavan et al., 2019a).

Our primary aim is to use the discriminative event-based model
(DEBM), which was shown to be more accurate than previously pro-
posed EBMs (Venkatraghavan et al., 2019a), to understand the effect of
different APOE alleles on the disease timeline of AD. To shed light on
different aspects of neurodegeneration and identify the earliest brain
regions affected, we included commonly studied cerebrospinal fluid
(CSF) biomarkers, cognitive scores, and volumetric biomarkers from
neuroimaging.

The default approach for estimating the disease progression timeline
would be to stratify the population based on their APOE &2 — 4 carrier
status and independently train the DEBM model on the stratified pop-
ulations (Young et al., 2014). However, since DEBM is a data-driven
model, stratification into smaller groups would lead to less accurate
models than those obtained by the original method on the entire dataset.
Hence our secondary aim is to propose and evaluate a novel approach
in which we split the different steps of DEBM into group-aspecific and
group-specific parts, where the entire dataset is used to train the group-
aspecific parts and only the data from a specific group is used to train the
group-specific parts of the DEBM. We present two different variations
of this approach and we hypothesize that the optimal split of the DEBM
steps into the group-aspecific and group-specific parts would result in
better accuracy of the estimated disease progression timeline. Since the
ground-truth timelines are unknown in a clinical setting, we evaluate
the accuracy of the proposed variations using simulation experiments
and we select the optimal method for the analysis on the effect of APOE
on the AD progression timeline on patient data.

To summarize, our contributions in this paper include proposing and
evaluating a novel approach for using DEBM in stratified populations
and estimating a comprehensive timeline of AD progression, in terms of
biomarker changes, in the presence of different APOE alleles.

2. Methods

An introduction to the DEBM model (Venkatraghavan et al., 2019a)
is provided in Section 2.1. In Section 2.2 we propose our novel approach
for using DEBM in stratified populations with its two variations.

2.1. Discriminative event-based modeling

In a cross-sectional dataset (X) of M subjects, including cogni-
tively normal individuals (CN), subjects with mild cognitive impairment
(MCI) and patients with AD, let X; denote a measurement of biomark-
ers for subject j € [1, M], consisting of scalar biomarker values x i for
i € [1,N]. x.; denotes the ith biomarker for any unspecified j. DEBM
estimates the posterior probabilities of individual biomarkers being ab-
normal. These posterior probabilities are used to estimate the ordering
of biomarker changes for each subject independently. The central order-
ing and disease progression timeline for the entire dataset are estimated
based on these subject-specific orderings. The resulting disease progres-
sion timeline is used for assessing the severity of disease in an individual
based on his/her biomarker values. Figure 1 shows the different steps
involved in DEBM.

Step 1 - Mixture Modeling: As AD is characterized by a cascade
of neuropathological changes that occurs over several years, presymp-
tomatic CN subjects can have some abnormal biomarker values. On the
other hand, in some clinically diagnosed AD subjects, a proportion of
biomarkers may still have normal values, as they might not have an un-
derlying AD pathology or could have atypical AD. Hence clinical labels
cannot directly be propagated to individual biomarkers to label nor-
mal and abnormal biomarker values. We shall refer to this as biomarker
label noise in the rest of the paper. In order to estimate the posterior
probabilities of individual biomarkers being abnormal, DEBM, similar
to previously proposed EBMs (Fonteijn et al., 2012; Huang and Alexan-
der, 2012; Young et al., 2014), fits a Gaussian mixture model (GMM)
to construct the normal / pre-event probability density function (PDF),
p(x.;|=E;), and abnormal / post-event PDF, p(x.;|E;). Event E; in this
notation is used to denote the corresponding biomarker becoming ab-
normal and —E; denotes the corresponnding biomarer being normal. The
aforementioned PDFs can be expressed as:

p(x.;|=E) = N(”i,—\E; 0i-~E) (D

p(x,inEi) = N‘(ﬂi,E§5i,E) 2)

Where, N'(£,[) is the normal distribution with mean y and standard
deviation o.
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For estimating these parameters robustly in the presence of
biomarker label noise, the normal and abnormal PDF estimates are first
initialized using the mean and standard deviations after truncating the
overlapping tails of the observed distributions in CN and AD subjects.
This can be observed in Fig. 2, where the initialization is performed only
based on the non-overlapping parts of green and red curves, while the
overlapping part is left out to account for biomarker label noise. At this
stage of GMM initialization, MCI subjects are left out as well, because
it is unsure a priori whether their biomarkers are normal or abnormal.
The resulting initialized PDFs are denoted as p(x.;|-E,)) and p(x. ;| E)).

This is followed by an alternating GMM maximum likelihood op-
timization scheme until both the Gaussian parameters as well as the
mixing parameters converge. All the subjects, including MCI, are used
for GMM optimization. After convergence, these Gaussians are used to
represent the PDFs p(x.;|~E;) and p(x ;| E;). The mixing parameters (6,)
are used as prior probabilities to convert these PDFs to posterior prob-
abilities p(—E;|x.;) and p(E;|x.;). Fig. 2 shows an overview of this opti-
mization scheme.

Step 2 - Subject-specific Orderings: p(E;|x; ;)Vi are used to estimate

the subject-specific orderings s;. s; is established such that:

5; 3 P( Es,<1)|xj,sj(1)> > > p(E:j(N))xj,sj(N)) 3

Step 3 - Central Ordering: DEBM computes the central event order-
ing S from the subject-specific estimates s;. To describe the distribution
of s ja generalized Mallows model is used (Fligner and Verducci, 1988).
The central ordering is defined as the ordering that minimizes the sum of
distances to all subject-specific orderings s;, with probabilistic Kendall’s
Tau being the distance measure (Venkatraghavan et al., 2019a). While .S
denotes the sequence of biomarker events, the relative position of these
events (event-centers) in a normalized scale of [0, 1] is denoted by the
vector 4. The pair {.S, A} together forms a disease progression timeline.

Step 4 - Patient Staging: Once the disease progression timeline is
created, subjects in an independent test set (7') can be placed on this
timeline to estimate disease severity. This is achieved by converting the
biomarker values of the test subjects to posterior probabilities p(E;|x; ),
Vj € T. These can be used to estimate disease severities in test subjects
by first estimating the conditional distribution p(i|.S, X s which esti-
mates the probability that the first i events of .S have occurred for a
test-subject and the rest are yet to occur.

; N
p(ilS, X;) < [T,_ p(E X )X
(15.X;) &< Tj-y p( Esw |50 1 p( \\Es(I)lxj’S(,)> “
I=i¥1
The patient stage of a test subject (Y ) is defined as the expectation
of A(i) with respect to the conditional distribution p(i|S, X ).
SN A)pGlS, X))

Y === "~ "7 )
TEN p1S. X))

2.2. Group-specific and group-aspecific parts of DEBM

We propose extensions of DEBM for stratified populations, i.e., when
the dataset X can be subdivided in groups g € [1, G], based on, e.g.,
genotype or phenotype of the subjects. Since DEBM is a data-driven
model, data stratification into smaller groups would lead to more inac-
curate models (Venkatraghavan et al., 2019a). To obtain better DEBM
accuracies in such scenario, we propose to co-train DEBM for estimating
disease timelines Vg by splitting DEBM into group-aspecific and group-
specific parts. The group-aspecific parts of DEBM are estimated using
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Fig. 2. Overview of GMM optimization in DEBM.
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Fig. 3. Overview of GMM optimization strategies in the different approaches
for DEBM analysis in stratified populations. (a) The default approach in which
GMM in each group is trained independently. (b) GMM in coupled DEBM, where
the different groups share the Gaussian parameters, but the mixing parameters
are estimated independently. (¢) GMM in co-init DEBM in which the different
groups are jointly initialized before the GMM optimization, but the optimization
is done independently for each group.

the entire dataset and group-specific parts are estimated for each group
independently.

We first discuss the default way of independently training DEBM
in the different groups and then propose two different approaches for
splitting DEBM into group-aspecific and group-specific parts.

Approach 1: Independent DEBM

In this default approach, each group is considered as an independent
dataset and the disease progression timeline in each group is estimated
independently. GMM in such a scenario is illustrated in Fig. 3a.

Approach 2: Coupled DEBM

p(x.;|=E;), p(x.;|E;) group-aspecific

6
00 {Sg: 4}, group-specific ©)

DEBM — {
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In this approach, we assume that the different groups share the normal
and abnormal PDFs, but the ordering in which these biomarkers become
abnormal are different. The mixing parameters (e,.,g) are considered as
group-specific part of the DEBM algorithm because the proportion of
subjects with normal and abnormal biomarker values in each group g
is correlated with the position of the biomarker along the ordering S,,
which we expect to be different in each group.

Hence, in our approach, we modify the alternating GMM opti-
mization scheme to jointly optimize the GMM parameters of multiple
groups. First, the GMM algorithm is initialized without considering the
groups, as explained in Section 2.1. Secondly, as with the default DEBM,
Gaussian parameters and mixing parameters are alternately optimized.
In contrast in coupled DEBM, the Gaussian parameters are estimated
jointly for all groups, while mixing parameters are estimated separately
for each group. This has been illustrated in Figure 3b.

Once the GMM optimization has been performed, S, and 4, are es-
timated in each group. Patient staging (Y;) of the test-subjects in group
g are computed based on the disease progression timeline {.S,, 4,}.

Approach 3: Co-init DEBM

p(x.;|mE), plx. ;| E;) group-aspecific
DEBM — 1 p,(x.;|E;), p(x.;| E;) group-specific @

;g {Sg: A} group-specific

In this approach, we assume that the different groups do not share
the normal and abnormal PDFs, but that they are close to each other.
Hence, in co-init DEBM, we relax the constraint on p(x.;|-E;) and
p(x. ;| E;) and instead consider the initialized values of normal and abnor-
mal PDFs (p(x.;|~E;) and p(x. ;| E;)) to be group-aspecific part of DEBM.
We estimate p,(x.;|=E;) and p,(x.;|E;) independently for each group.
This is illustrated in Fig. 3c.

As with the previous approach, S,, 4, and the patient staging of the
test-subjects in group g are computed independently for each group.

3. Experiments

Section 3.1 describes the experiments to evaluate the proposed
DEBM approaches on a stratified population. Since ground-truth order-
ings are unknown in real clinical data, we use simulated datasets for
evaluating the methods. After evaluating the proposed approaches, we
select the best approach for analyzing the effect of APOE on AD progres-
sion using subjects from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database. Section 3.2 descibes the details of these experi-
ments.

3.1. Simulation experiments

We used the framework developed by Young et al. (2015) for simu-
lating cross-sectional data consisting of scalar biomarker values for CN,
MCI and AD subjects in two groups. In this framework, disease progres-
sion in a subject is modeled by a series of biomarker changes repre-
senting the temporal cascade of biomarker abnormality as estimated by
an EBM. Individual biomarker trajectories are represented by sigmoids
varying from the biomarker’s normal value to its abnormal value. To ac-
count for inter-subject variability, the normal and abnormal values for
different subjects are drawn randomly from Gaussian distributions.

The simulation dataset used in our experiments are based on a
set of seven biomarkers as described in the simulation experiments
of Venkatraghavan et al. (2019a). The simulated datasets were strati-
fied into two groups, with each group having its own distinct disease
progression patterns. There are two ways in which the progression of
disease in the groups can differ: 1. difference in ground-truth orderings
S, and S,; 2. difference in the abnormal biomarker PDFs in the two
groups ie. p;(x.;|E;) and p,(x ;| E;). Each of these differences could af-
fect the accuracy of the proposed approaches. Hence, we evaluated the
proposed approaches in the presence of each of these differences. Nor-
malized Kendall’s Tau distance between the estimated ordering (.S) and
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the ground-truth ordering (Sg,) was used as an evaluation measure in
these experiments:

K50
o=
(3)

®)

where K(A, B) is the number of swaps required to obtain ordering B
from ordering A.

The normalization ensures that ¢ ¢ falls in the range [0, 1], with 0 as
the distance when the two orderings are the same, and 1 as the distance
when the two orderings are the reverse of each other.

Experiment 1: The first simulation experiment studied the effect of
the difference in ordering between the two groups. The ordering in the
first group (Group 1) was fixed and the ordering in the second group
(Group 2) was selected randomly such that the normalized Kendall’s
Tau distance between the two groups was a fixed number, say €. €,
was varied from O to 1 in steps of 0.2. The number of subjects in Group
2 was kept constant at 900. The number of subjects in Group 1 was
varied from 100 to 900 in steps of 200, to study how the different ap-
proaches perform in small as well as large groups. The normal and ab-
normal biomarkers levels in the two groups were sampled from the same
Gaussian distribution for this experiment. We generated 50 random rep-
etitions of the simulated datasets, and reported mean and standard de-
viation of ¢ ¢ for independent DEBM, coupled DEBM, and co-init DEBM
in groups 1 and 2.

Experiment 2: This experiment studied the performance of the pro-
posed approaches with the u, ;  parameter of the p,(x. ;| E;) distribution
being different in the two groups. u;; p was fixed, and u, ; ; was varied
such that the difference u,; p — 4 ;  (¢5) was one of {-0.2d,0,+0.2d}
where d =y ; g — py ;- O is considered the reference level, where the
abnormal Gaussians are the same in the two groups. y,; .r were kept
the same in the two groups. Hence, when ¢; = —0.2d, the abnormal
biomarker levels are closer to the normal biomarker levels in Group
2 than in Group 1. This results in Group 2 biomarkers being weaker
than their Group 1 counterparts when ¢; = —0.2d and stronger when
€ = +0.2d. The number of subjects in Group 2 was kept a constant at
900, while the subjects in Group 1 increased from 100 to 900. &, be-
tween the two groups was fixed at 0.4. We again generated 50 random
repetitions of the simulated datasets, and reported mean and standard
deviation of ¢ ¢ for coupled DEBM, co-init DEBM and DEBM.

These experiments were used to evaluate the different approaches
mentioned in Section 2 and select the best method for analyzing the
effect of APOE alleles in AD progression.

3.2. Studying the effect of APOE

We considered the baseline measurements from 417 CN, 235 MCI
converters and 342 AD subjects in ADNI1, ADNIGO and ADNI2 studies.”
The MCI converters are subjects who had MCI at baseline but converted
to AD within 3 years of baseline measurement. We excluded subjects
with significant memory concerns (without a diagnosis of AD or MCI)
and MCI non-converters in our experiments to select a more phenotyp-
ically homogeneous group of subjects with prevalent or incident AD. In
each of the experiments, the dataset was divided into three groups (e2
carriers, homozygous €3 carriers, and ¢4 carriers) based on the subject’s
APOE carriership (van der Lee et al., 2018). Subjects with APOE 2,4
(n=34) were not included in either group because of the presence of
both €2 and &4 alleles

2 The ADNI was launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive im-
pairment (MCI) and early Alzheimers disease (AD). For up-to-date information,
see www.adni-info.org.
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Table 1

Demographics for the used population. 2% represents the subjects with APOE
alleles 2,2 and €2, 3. 33 represents the subjects with reference APOE allele €3, 3.
x4 represents the subjects with APOE alleles €3, 4 and €4, 4. Subjects with both
€2 and &4 alleles were excluded from this study (n=34). Edu. is an abbreviation
used for Education.

Demographics

Diagnosis CN MClc AD

n 417 235 342

APOE 2x[33[x4 57/244/110 6/66/156 12/101/219
Sex M/F 209/208 145/90 189/153
Age [yrs.] (u+0) 74.8 +5.7 73.7+17.0 750+7.8
Edu [yrs.] (u o) 163 +2.7 159 +2.7 152+3.0

Table 2
Biomarker availability in number of subjects in the APOE based groups of 2
carriers, homozygous €3 carriers, and €4 carriers.

Biomarker availability

Biomarker €2 carriers Homozygous €3 €4 carriers
(N =15) carriers (N =411) (N =485)

Imaging 74 408 481

ABETA 57 301 357

PTAU 57 301 357

TAU 57 299 348

NG 21 113 131

NFL 23 118 137

MMSE 75 411 485

ADAS 74 410 477

Subject demographics and their APOE carrierships are summarized
in Table 1. The modalities considered were structural imaging biomark-
ers, biomarkers extracted from cerebrospinal fluid (CSF), and cogni-
tive biomarkers. Structural imaging biomarkers were obtained from T1-
weighted MRI acquired at 1.5T or 3T. Details of the MRI acquisition
protocols of ADNI can be found in Jack Jr. et al., 2008, 2015.

Imaging biomarkers were estimated from T1-weighted MRI scans
analysed with FreeSurfer software v6.0 cross-sectional stream and out-
puts were visually checked. We assumed a symmetric pattern of atro-
phy in AD and averaged imaging biomarkers between the left and right
hemisphere.

Experiment 3: For this experiment, the selected imaging biomarkers
were: hippocampal volume, volume of the entorhinal cortex, fusiform
gyrus volume, middle-temporal gyrus volume, precuneus volume, to-
gether with whole brain volume and volume of the ventricles (Archetti
et al., 2019; Frisoni et al., 2010; Vemuri and Jack, 2010). The se-
lected CSF based biomarkers were: CSF concentrations of Amyloid-
B4 (ABETA), total Tau (TAU) and phosphorylated Tau,g; (PTAU) pro-
teins (Blennow and Hampel, 2003; Blennow et al., 2010), Neuro-
granin (Thorsell et al., 2010) and Neurofilament light chain (Jin et al.,
2019; de Wolf et al., 2020). Mini mental state examination (MMSE) and
Alzheimer’s Disease Assessment Scale - Cognitive (13 items) (ADAS13)
were used as cognitive biomarkers. The availability of these multimodal
biomarkers in the ADNI database is summarized in Table 2.

We downloaded the CSF measurements from the ADNI database.
The measurements of ABETA, TAU and PTAU had been made using
the microbead-based multiplex immunoassay, the INNO-BIA AlzBio3
RUO (Olsson et al., 2005). The measurement of NFL had been made with
enzyme-linked immunosorbent assay NF-light ELISA kit (Mattsson et al.,
2017). NG had been measured by electrochemiluminescence technol-
ogy (Meso Scale Discovery) using a monoclonal antibody specific for
NG (Ng7) for coating together with a detector antibody polyclonal neu-
rogranin anti-rabbit (ab 23570, Upstate) (Portelius et al., 2015). As de-
scribed previously in Venkatraghavan et al. (2019a), the TAU and PTAU
measurements were transformed to logarithmic scales to make the dis-
tributions less skewed and more suitable for DEBM analysis.
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The volumes of the selected regions were regressed with age, sex and
intra-cranial volume (ICV) and the effects of these factors were subse-
quently corrected for, before being used as biomarkers. The effects of
age and sex were regressed out of CSF features, whereas effects of age,
sex and education were regressed out of cognitive scores.

For the 12 selected biomarkers, we estimated the disease timelines in
the three aforementioned groups using the method selected after simu-
lation experiments. We studied the positional variance of the estimated
orderings by creating 100 bootstrapped samples of the data. In order
to evaluate if the estimated orderings in the three groups were signif-
icantly different from one another, we used permutation testing and
estimated the distribution of the Kendall’s Tau distance under the null
hypothesis. To compute this distribution, we generated 10,000 random
permutations of the three groups. We then computed the one-sided p-
values for the actual Kendall’s Tau distances between the orderings of
the three groups, calculated as the proportion of sampled permutations
where the distance was greater than or equal to the actual distance, and
using Bonferroni correction to account for multiple testing.

Experiment 4: In this experiment, we validated the disease stage
(Y;) by computing its correlation with the subjects” MMSE and ADAS13
values. We used a 10-fold cross validation, where the training set was
used to estimate the disease timeline in the aforementioned groups and
the test subjects’ disease stage was evaluated by placing them on this
disease timeline. We used the volume-based and CSF-based biomarkers
from Experiment 3, but excluded MMSE and ADAS13 scores from the
model.

4. Results
4.1. Simulations

Experiment 1: Fig. 4 (a) and (b) show the ordering errors (eg) in
Group 1 of the simulation datasets for DEBM, coupled DEBM and co-
init DEBM as a function of number of subjects in Group 1, when ¢
between the two groups changes from O to 1. Fig. 4 (c)-(e) show ¢ in
Group 2 of the simulation datasets for the aforementioned methods, as a
function of number of subjects in Group 1. In our experiments, Group 1
dataset remains the same while Group 2 dataset changes as ¢, increase.
Hence DEBM results do not change with change in ¢, in Fig. 4 (a) and
(b), whereas in Fig. 4 (c), DEBM results do not change with increase in
number of subjects in Group 1.

It can be seen that both coupled-training methods (i.e., co-init DEBM
and coupled DEBM) outperform the default method of independently
training DEBM models. It can also be observed that in both co-init DEBM
and coupled DEBM the ordering errors decrease as ¢, increases and
that co-init DEBM outperforms coupled DEBM for lower values of ¢,
whereas the performance is on par with coupled DEBM for higher values
of 4.

Experiment 2: Fig. 5 (a) and (b) show ¢ in Group 1 and Fig. 5 (c)-
(e) show the same in Group 2, when varying .. Even with £, # 0, cou-
pled training (i.e., co-init DEBM and coupled DEBM) outperformed the
default method of independently training DEBM models. Co-init DEBM
showed negligible change in the errors when ¢, # 0. The performance
of coupled DEBM in Group 1 worsened for e; = +0.2d (Fig. 5 (a)) and
in Group 2 for e = —0.2d (Fig. 5 (d)).

4.2. Studying the effect of APOE

The results in Experiments 1 and 2 show that the performance of
co-init DEBM is more accurate and robust than coupled DEBM in most
scenarios. We hence analyzed Experiments 3 and 4 using co-init DEBM.

Experiment 3: Fig. 6 shows orderings of CSF, global cognition and
volumetric biomarkers in the APOE based groups of €2 carriers, homozy-
gous €3 carriers, and €4 carriers along with their uncertainty estimates.
It can be seen that the uncertainty of the ordering in the €2 carriers
group was high. Despite this uncertainty, some biomarkers (i.e. MMSE,
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Fig. 4. Experiment 1: The effect of ¢, (the difference in groundtruth event orderings in the two groups) on the performance of the proposed methods. The shaded
region in these plots represents standard deviation of the error in estimation of the proposed methods in 50 random iterations of simulations. The plots in (a) and (b)
show the ordering errors in Group 1 using Coupled DEBM and Co-init DEBM with independent DEBM shown in both (a) and (b), as a function of number of subjects
in Group 1. The plots in (c), (d) and (e) show the ordering errors in Group 2 using independent DEBM, Coupled DEBM and Co-init DEBM respectively as a function

of number of subjects in Group 1.

NG and PTAU) seem to occur earlier than the other biomarkers in this
group.

In the homozygous €3 carrier group, ABETA was very prominently
the earliest biomarker, followed by cognitive scores of MMSE and
ADAS13. Among the CSF biomarkers, PTAU followed immediately af-
ter ABETA, which was inturn followed by TAU. NFL and NG were late
biomarkers. Among the structural biomarkers, volumes of fusiform and
middle-temporal gyri were the first to become abnormal, followed by
ventricular volume and wholebrain volume. Hippocampus, precuneus
and entorhinal volumes were late biomarkers in this group.

In the &4 carrier group, the CSF biomarkers followed a pattern that
was similar to that of the homozygous 3 carrier group. The cognitive
biomarkers were early biomarkers in this group as well. However the
ordering in structural biomarkers was very different from that in the
homozygous €3 carrier group. Hippocampus and entorhinal volumes

were early biomarkers in this group, followed by middle-temporal and
fusiform gyri volumes. Wholebrain, ventricular and precuneus volumes
were late biomarkers.

The ordering of the £2 carrier group was significantly different from
that of the homozygous €3 carrier group (p = 0.0156, after Bonferroni
correction for multiple testing). Similarly, the orderings for the other
two groups were significant as well: p = 0.0147 for the difference be-
tween £2 carrier group and &4 carrier group and p = 0.0003 for the
difference between the homozygous 3 carrier group and &4 carrier
group.

Experiment 4: The variation of MMSE and ADAS13 scores with re-
spect to the estimated disease stages has been plotted in Fig. 7, for all
three groups. The patient stages showed a significant correlation with
both MMSE and ADAS13 scores. The correlation coefficients were also
comparable in the three groups.
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Fig. 5. Experiment 2: The effect of ¢, (difference in abnormal biomarker levels in the two groups), on the performance of the proposed methods. The shaded region
represents standard deviation of the error in 50 random iterations. The plots in (a) and (b) show the ordering errors in Group 1 using Coupled DEBM and Co-init
DEBM with independent DEBM shown in both (a) and (b), as a function of number of subjects in Group 1. The plots in (c), (d) and (e) show the ordering errors in
Group 2 using independent DEBM, Coupled DEBM and Co-init DEBM respectively as a function of number of subjects in Group 1.

5. Discussion

DEBM models have been shown to be effective in determining the
temporal cascade of biomarker abnormality as AD progresses, from
cross-sectional data. In this work, we introduced a novel concept of split-
ting the different steps of DEBM into group-specific and group-aspecific
parts for coupled training in stratified population. We considered two
novel variations to split the steps of DEBM in this manner and through
thorough experimentation in simulation datasets we observed that co-
init DEBM helps in obtaining more accurate orderings in a stratified
population. Using this method, we estimated the biomarker cascades in
AD progression with €2 alleles, homozygous ¢3 alleles, and ¢4 alleles of
APOE, based on cross-sectional ADNI data. While the findings in the ho-
mozygous €3 carrier and £4 carrier groups fit the current understanding
of progression of AD with high-confidence, the finding in the £2 carrier
group shows evidence for an alternative pathway (with relatively low
confidence). In this section, we discuss the insights provided by the sim-
ulation experiments (Section 5.1) used for method selection as well as
the insights into the AD progression pathways provided by our experi-
ments on the ADNI dataset (Section 5.2).

5.1. Choice of the method

Coupled DEBM and co-init DEBM both split DEBM into group-
specific and group-aspecific steps for coupled training of an EBM in
stratified populations. Experiment 1 and 2 showed that coupled train-

ing of the group-aspecific parts of DEBM and independently training
the group-specific parts of DEBM results in more accurate orderings in
the groups better than the default approach of independently training a
DEBM model in each group.

While splitting DEBM into group-specific and group-aspecific parts,
we started with the assumption that the latent true normal and abnor-
mal biomarker distributions in the groups are either same or similar.
The difference between co-init DEBM and coupled DEBM is that, co-
init DEBM accounts for slight differences in the underlying biomarker
distributions between the groups whereas coupled DEBM does not.

The simulation dataset generated in Experiment 1 had the same true
normal and abnormal biomarker distributions in the different groups,
from which the simulated subjects were randomly sampled, aligning
well with the assumption of coupled DEBM. However, this did not re-
sult in overall better accuracies for coupled DEBM than that of co-init
DEBM. Co-init DEBM was also more robust than coupled DEBM as its ac-
curacy was less dependent on ¢, the distance between the ground-truth
orderings in the two groups.

Another observation in Experiment 1, which was rather counter-
intuitive, was that the errors made by the co-init and coupled DEBM
models decreased as the distance between the ground-truth orderings
in the two groups increased. When the orderings are further apart, the
combined biomarker distributions in CN and AD groups have a larger
overlap. The non-overlapping initialization (before the GMM optimiza-
tion) thus results in the normal and abnormal distributions to be fur-
ther apart. We hypothesize that this results in a better estimation of
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Fig. 6. Experiment 3: Orderings of CSF, global cognition and volumetric
biomarkers in the APOE based groups of ¢2 carriers, homozygous €3 carriers,
and 4 carriers along with their uncertainty estimates. Uncertainty in the esti-
mation of the ordering was measured by 100 repetitions of bootstrapping, in
the three APOE based groups. The color-map is based on the number of times
a biomarker is at a position in 100 repetitions of bootstrapping. The number of
subjects in the three groups were 75, 411 and 485 respectively. The orderings
were obtained using Co-init DEBM.
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the mixing parameters during GMM optimization and in-turn resulted
in more accurate orderings, as mixing-parameters are dependent on the
biomarker’s position in the ordering.

In Experiment 2, we checked the performance of our approaches
when the assumption (true normal and abnormal biomarker distribu-
tions being same across groups) is violated in the dataset. This experi-
ment showed that the orderings obtained using co-init DEBM are more
robust to differences between the abnormal Gaussians across groups
than those obtained with coupled DEBM. With coupled DEBM, the error
increased in the group with weaker biomarkers i.e., Group 1 in the case
of e = +0.2d and Group 2 in the case of £ = —0.2d. This shows that
coupled DEBM introduces a systematic bias in the estimation of ordering
that is detrimental to the group with weaker biomarkers. Co-init DEBM
also showed a similar bias, but to a much lesser extent.

We hence selected co-init DEBM as the preferred approach for split-
ting and performed our analysis on ADNI dataset using this approach.
We expect that this idea of splitting DEBM into group-specific and
group-aspecific parts can be easily extended to the EBM introduced
by Fonteijn et al. (2012).

5.2. Cascade of biomarker changes in the APOE based groups

Dividing the total population into groups based on APOE car-
riership enabled us to create more phenotypically homogeneous
groups (Weintraub et al., 2019), each with potentially specific disease
progression timeline. In this section, we discuss our results in these
APOE carriership based groups.

Our findings show that the three APOE-carriership based groups
have significantly different temporal cascades of disease progression.
This suggests that the underlying pathways of progression are different
for the three genotypes. Among the CSF biomarkers in the homozygous
€3 carrier and the &4 carrier groups, ABETA abnormality is the earliest
biomarker event followed by PTAU. This fits current understanding of
AD progression (Bloom, 2014). It also confirms the need for preventing
the accumulation of ABETA in high-risk patients. NFL and NG are late
biomarkers in the homozygous €3 carrier and 4 carrier groups, which
suggests that axonal (Ashton et al., 2019) and synaptic (Thorsell et al.,
2010) degeneration do not occur until very late in the disease process in
these groups. NG being abnormal after PTAU and TAU in the homozy-
gous €3 carrier and &4 carrier groups is also consistent with the previous
findings that Tau mediates synaptic damage in AD (Jadhav et al., 2015).

In the €2 carrier group, we found that the abnormal NG and PTAU
are the earliest CSF events, even before ABETA becomes abnormal. This
could hint at the existence of an alternative pathway for the formation
of tau tangles in the brain before ABETA accumulation, as suggested
in Weigand et al. (2019), but needs more extensive validation.

Among the volumetric biomarkers, Entorhinal cortex is one of the
early biomarkers in the €4 carrier group which is supported by the find-
ings in Huijbers et al. (2014), but is one of the last biomarkers to be-
come abnormal in the homozygous £3 carrier group. Ventricular vol-
ume is a late biomarker in the £4 carrier group but it becomes abnor-
mal quite early in the homozygous £3 carrier group as also observed
by Nestor et al. (2008). Hippocampus volume is the earliest biomarker
in the £4 carrier group, but is a relatively late biomarker in the ho-
mozygous €3 carrier and €2 carrier groups. This suggests that incidence
of hippocampal sparing AD (Ferreira et al., 2017) could correlate with
APOE carriership.

The findings related to these orderings of biomarker events were
validated by correlating the patient stages derived from these orderings
with MMSE and ADAS13 scores. Patient stages of subjects in all three
groups, when used as test-subjects in a cross-validated manner, showed a
significant correlation (p < 0.001) with these scores. These correlations
validate our findings and suggest that these genotype-specific disease
progression timelines could be used for patient monitoring.
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6. Conclusion and future work

We conclude that co-init DEBM provides the best accuracy and ro-
bustness when estimating orderings in stratified populations. Future
work on co-init DEBM can focus on extending the approach for high-
dimensional imaging biomarkers (Venkatraghavan et al., 2019b). This
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Fig. 7. Experiment 4: Correlation of esti-
mated disease stages with MMSE and ADAS
scores in the APOE based groups of €2 carriers,
homozygous €3 carriers, and ¢4 carriers. The
plot on top of each subfigure shows the prob-
ability density function of the disease stages,
and the plot on the right of each subfigure
shows the probability density function of the
cognitive score in the subfigure. The 2D plot
in each subfigure shows the joint density func-
tion of the two axes. The line in each subfigure
shows the linear regression of MMSE / ADAS
scores with the estimated disease stage and the
shaded area around the line shows its 95% con-
fidence interval. Figures (a),(c) and (e) depict
correlation between MMSE score and obtained
disease stages in the three APOE based groups.
Figures (b), (d) and (f) depict correlation be-
tween ADAS13 score and the obtained disease
stages in the three APOE based groups.

work also provides groundwork for extending the method towards
hypothesis-free, data-driven stratification of phenotypes.

We gained new insights into the disease progression timeline of AD
in the APOE based groups of ¢2 carriers, homozygous €3 carriers, and
€4 carriers. While we observed that the estimated disease progression
timelines in the &4 carrier and the homozygous 3 carrier groups fit



V. Venkatraghavan, S. Klein, L. Fani et al.

the current understanding of AD progression with high confidence, the
estimated timelines in the £2 carrier group may suggest an alternative
pathway for the formation of tau tangles in the brain before amyloid
p accumulation, albeit with relatively low condence. We expect that
these genotype-specific disease progression timelines will benefit patient
monitoring in the future, and may help optimize selection of eligible
subjects for clinical trials.
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