596 research outputs found

    Subarcsecond Imaging of the NGC 6334 I(N) Protocluster: Two Dozen Compact Sources and a Massive Disk Candidate

    Get PDF
    Using the SMA and VLA, we have imaged the massive protocluster NGC6334I(N) at high angular resolution (0.5"~650AU) from 6cm to 0.87mm, detecting 18 new compact continuum sources. Three of the new sources are coincident with previously-identified water masers. Together with the previously-known sources, these data bring the number of likely protocluster members to 25 for a protostellar density of ~700 pc^-3. Our preliminary measurement of the Q-parameter of the minimum spanning tree is 0.82 -- close to the value for a uniform volume distribution. All of the (nine) sources with detections at multiple frequencies have SEDs consistent with dust emission, and two (SMA1b and SMA4) also have long wavelength emission consistent with a central hypercompact HII region. Thermal spectral line emission, including CH3CN, is detected in six sources: LTE model fitting of CH3CN(J=12-11) yields temperatures of 72-373K, confirming the presence of multiple hot cores. The fitted LSR velocities range from -3.3 to -7.0 km/s, with an unbiased mean square deviation of 2.05 km/s, implying a dynamical mass of 410+-260 Msun for the protocluster. From analysis of a wide range of hot core molecules, the kinematics of SMA1b are consistent with a rotating, infalling Keplerian disk of diameter 800AU and enclosed mass of 10-30 Msun that is perpendicular (within 1 degree) to the large-scale bipolar outflow axis. A companion to SMA1b at a projected separation of 0.45" (590AU; SMA1d), which shows no evidence of spectral line emission, is also confirmed. Finally, we detect one 218.440GHz and several 229.7588GHz Class-I methanol masers.Comment: 54 pages, 11 figures. Accepted for publication in The Astrophysical Journal. Version 2: Keywords updated, and three "in press" citations updated to journal reference. Version 3: corrected the error in the quantum numbers of the 218 GHz methanol transition in the text and in Table 8. For a PDF version with full-resolution figures, see http://www.cv.nrao.edu/~thunter/papers/ngc6334in2014.pd

    First Results from a 1.3 cm EVLA Survey of Massive Protostellar Objects: G35.03+0.35

    Full text link
    We have performed a 1.3 centimeter survey of 24 massive young stellar objects (MYSOs) using the Expanded Very Large Array (EVLA). The sources in the sample exhibit a broad range of massive star formation signposts including Infrared Dark Clouds (IRDCs), UCHII regions, and extended 4.5 micron emission in the form of Extended Green Objects (EGOs). In this work, we present results for G35.03+0.35 which exhibits all of these phenomena. We simultaneously image the 1.3 cm ammonia (1,1) through (6,6) inversion lines, four methanol transitions, two H recombination lines, plus continuum at 0.05 pc resolution. We find three areas of thermal ammonia emission, two within the EGO (designated the NE and SW cores) and one toward an adjacent IRDC. The NE core contains an UCHII region (CM1) and a candidate HCHII region (CM2). A region of non-thermal, likely masing ammonia (3,3) and (6,6) emission is coincident with an arc of 44 GHz methanol masers. We also detect two new 25 GHz Class I methanol masers. A complementary Submillimeter Array 1.3 mm continuum image shows that the distribution of dust emission is similar to the lower-lying ammonia lines, all peaking to the NW of CM2, indicating the likely presence of an additional MYSO in this protocluster. By modeling the ammonia and 1.3 mm continuum data, we obtain gas temperatures of 20-220 K and masses of 20-130 solar. The diversity of continuum emission properties and gas temperatures suggest that objects in a range of evolutionary states exist concurrently in this protocluster.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA. 16 pages, 3 figures. Includes the complete version of Figure 3, which was unable to fit into the journal article due to the number of panel

    The Protocluster G18.67+0.03: A Test Case for Class I Methanol Masers as Evolutionary Indicators for Massive Star Formation

    Full text link
    We present high angular resolution Submillimeter Array (SMA) and Karl G. Jansky Very Large Array (VLA) observations of the massive protocluster G18.67+0.03. Previously targeted in maser surveys of GLIMPSE Extended Green Objects (EGOs), this cluster contains three Class I methanol maser sources, providing a unique opportunity to test the proposed role of Class I masers as evolutionary indicators for massive star formation. The millimeter observations reveal bipolar molecular outflows, traced by 13CO(2-1) emission, associated with all three Class I maser sources. Two of these sources (including the EGO) are also associated with 6.7 GHz Class II methanol masers; the Class II masers are coincident with millimeter continuum cores that exhibit hot core line emission and drive active outflows, as indicated by the detection of SiO(5-4). In these cases, the Class I masers are coincident with outflow lobes, and appear as clear cases of excitation by active outflows. In contrast, the third Class I source is associated with an ultracompact HII region, and not with Class II masers. The lack of SiO emission suggests the 13CO outflow is a relic, consistent with its longer dynamical timescale. Our data show that massive young stellar objects associated only with Class I masers are not necessarily young, and provide the first unambiguous evidence that Class I masers may be excited by both young (hot core) and older (UC HII) MYSOs within the same protocluster.Comment: Astrophysical Journal Letters, accepted. emulateapj, 7 pages including 4 figures and 1 table. Figures compressed. v2: coauthor affiliation updated, emulateapj versio

    VLA Survey of Dense Gas in Extended Green Objects: Prevalence of 25 GHz Methanol Masers

    Get PDF
    We present 14"\sim1-4" resolution Very Large Array (VLA) observations of four CH3_3OH J2J1J_2-J_1-EE 25~GHz transitions (JJ=3, 5, 8, 10) along with 1.3~cm continuum toward 20 regions of active massive star formation containing Extended Green Objects (EGOs), 14 of which we have previously studied with the VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al. 2009). Sixteen regions are detected in at least one 25~GHz line (JJ=5), with 13 of 16 exhibiting maser emission. In total, we report 34 new sites of CH3_3OH maser emission and ten new sites of thermal CH3_3OH emission, significantly increasing the number of 25~GHz Class I CH3_3OH masers observed at high angular resolution. We identify probable or likely maser counterparts at 44~GHz for all 15 of the 25~GHz masers for which we have complementary data, providing further evidence that these masers trace similar physical conditions despite uncorrelated flux densities. The sites of thermal and maser emission of CH3_3OH are both predominantly associated with the 4.5 μ\mum emission from the EGO, and the presence of thermal CH3_3OH emission is accompanied by 1.3~cm continuum emission in 9 out of 10 cases. Of the 19 regions that exhibit 1.3~cm continuum emission, it is associated with the EGO in 16 cases (out of a total of 20 sites), 13 of which are new detections at 1.3~cm. Twelve of the 1.3~cm continuum sources are associated with 6.7~GHz maser emission and likely trace deeply-embedded massive protostars

    Deep Very Large Array Radio Continuum Surveys of GLIMPSE Extended Green Objects (EGOs)

    Full text link
    We present the results of deep, high angular resolution Very Large Array (VLA) surveys for radio continuum emission towards a sample of 14 GLIMPSE Extended Green Objects (EGOs). Identified as massive young stellar object (MYSO) outflow candidates based on their extended 4.5 micron emission in Spitzer images, the EGOs in our survey sample are also associated with 6.7 GHz Class II and/or 44 GHz Class I methanol masers. No continuum is detected at 3.6 or 1.3 cm towards the majority (57%) of our targets (median rms ~0.03 and 0.25 mJy/beam). Only two EGOs are associated with optically thin emission consistent with ultracompact/compact HII regions. Both of these sources exhibit cm-wavelength multiplicity, with evidence that one of the less-evolved members may be driving the 4.5 micron outflow. Most of the other cm-wavelength EGO counterparts are weak (< 1 mJy), unresolved, undetected at 1.3 cm, and characterized by intermediate spectral indices consistent with hypercompact (HC) HII regions or ionized winds or jets. One EGO cm counterpart, likely an optically thick HC HII region, is detected only at 1.3 cm and is associated with hot core line emission and water and 6.7 GHz methanol masers. The results of our exceptionally sensitive survey indicate that EGOs signify an early stage of massive star formation, before photoionizing feedback from the central MYSO significantly influences the (proto)cluster environment. Actively driving outflows (and so, presumably, actively accreting), the surveyed EGOs are associated with significant clump-scale gas reservoirs, providing sufficient material for sustained, rapid accretion.Comment: ApJ, accepted. 44 pages including 6 figures and 6 tables. Figures compresse

    A Class I and Class II Methanol Maser Survey of Extended Green Objects (EGOs) from the GLIMPSE Survey

    Full text link
    We present the results of a high angular resolution Very Large Array (VLA) Class I 44 GHz and Class II 6.7 GHz methanol maser survey of a sample of ~20 massive young stellar object (MYSO) outflow candidates selected on the basis of extended 4.5 micron emission in Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) images. These 4.5 micron-selected candidates are referred to as extended green objects (EGOs), for the common coding of this band as green in three-color IRAC images. The detection rate of 6.7 GHz Class II methanol masers, which are associated exclusively with massive YSOs, towards EGOs is greater than ~64%--nearly double the detection rate of surveys using other MYSO selection criteria. The detection rate of Class I 44 GHz methanol masers, which trace molecular outflows, is ~89% towards EGOs associated with 6.7 GHz methanol masers. The two types of methanol masers exhibit different spatial distributions: 6.7 GHz masers are centrally concentrated and usually coincide with 24 micron emission, while 44 GHz masers are widely distributed and generally trace diffuse 4.5 micron features. We also present results of a complementary James Clerk Maxwell Telescope (JCMT) single-pointing molecular line survey of EGOs in the outflow tracers HCO+(3-2) and SiO(5-4). The HCO+ line profiles and high SiO detection rate (90%) are indicative of the presence of active outflows. No 44 GHz continuum emission is detected at the 5 mJy/beam (5 sigma) level towards 95% of EGOs surveyed, excluding bright ultracompact HII regions as powering sources for the 4.5 micron outflows. The results of our surveys constitute strong evidence that EGOs are young, massive YSOs, with active outflows, presumably powered by ongoing accretion.Comment: Accepted, ApJ. 73 pages, 5 figures, plus full content of two online figure sets and two online-only data tables. Version with full resolution figures is available at http://www.astro.wisc.edu/glimpse/EGO_methanol_maser_surve

    Physical Conditions in Orion's Veil

    Get PDF
    Orion's veil consists of several layers of largely neutral gas lying between us and the main ionizing stars of the Orion nebula. It is visible in 21cm H I absorption and in optical and UV absorption lines of H I and other species. Toward the Trapezium, the veil has two remarkable properties, high magnetic field (~100 microGauss) and a surprising lack of molecular hydrogen given its total hydrogen column density. Here we compute photoionization models of the veil to establish its gas density and its distance from the Trapezium. We use a greatly improved model of the hydrogen molecule that determines level populations in ~1e5 rotational/vibrational levels and provides improved estimates of molecular hydrogen destruction via the Lyman-Werner bands. Our best fit photoionization models place the veil 1-3 pc in front of the star at a density of 1e3-1e4 cubic centimeters. Magnetic energy dominates the energy of non-thermal motions in at least one of the 21cm H I velocity components. Therefore, the veil is the first interstellar environment where magnetic dominance appears to exist. We find that the low ratio of molecular to atomic hydrogen (< 1e-4) is a consequence of high UV flux incident upon the veil due to its proximity to the Trapezium stars and the absence of small grains in the region.Comment: 45 pages, 20 figures, accepted for publication in Ap

    OH (1720 MHz) Masers: A Multiwavelength Study of the Interaction between the W51C Supernova Remnant and the W51B Star Forming Region

    Full text link
    We present a comprehensive view of the W51B HII region complex and the W51C supernova remnant (SNR) using new radio observations from the VLA, VLBA, MERLIN, JCMT, and CSO along with archival data from Spitzer, ROSAT, ASCA, and Chandra. Our VLA data include the first 400 cm (74 MHz) continuum image of W51 at high resolution (88 arcsec). The 400 cm image shows non-thermal emission surrounding the G49.2-0.3 HII region, and a compact source of non-thermal emission (W51B_NT) coincident with the previously-identified OH (1720 MHz) maser spots, non-thermal 21 and 90 cm emission, and a hard X-ray source. W51B_NT falls within the region of high likelihood for the position of TeV gamma-ray emission. Using the VLBA three OH (1720 MHz) maser spots are detected in the vicinity of W51B_NT with sizes of 60 to 300 AU and Zeeman effect magnetic field strengths of 1.5 to 2.2 mG. The multiwavelength data demonstrate that the northern end of the W51B HII region complex has been partly enveloped by the advancing W51C SNR and this interaction explains the presence of W51B_NT and the OH masers. This interaction also appears in the thermal molecular gas which partially encircles W51B_NT and exhibits narrow pre-shock (DeltaV 5 km/s) and broad post-shock (DeltaV 20 km/s) velocity components. RADEX radiative transfer modeling of these two components yield physical conditions consistent with the passage of a non-dissociative C-type shock. Confirmation of the W51B/W51C interaction provides additional evidence in favor of this region being one of the best candidates for hadronic particle acceleration known thus far.Comment: Accepted to Ap

    Self-gravitating disc candidates around massive young stars

    Get PDF
    DHF gratefully acknowledges support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG. JDI gratefully acknowledges support from the DISCSIM project, grant agreement 341137, funded by the European Research Council under ERC-2013-ADG. CJC acknowledges support from STFC grant ST/M001296/1.There have been several recent detections of candidate Keplerian discs around massive young protostars. Given the relatively large disc-to-star mass ratios in these systems, and their young ages, it is worth investigating their propensity to becoming self-gravitating. To this end, we compute self-consistent, semi-analytic models of putative self-gravitating discs for five candidate disc systems. Our aim is not to fit exactly the observations, but to demonstrate that the expected dust continuum emission from marginally unstable self-gravitating discs can be quite weak, due to high optical depth at the mid-plane even at millimetre wavelengths. In the best cases, the models produce ‘observable’ disc masses within a factor of <1.5 of those observed, with mid-plane dust temperatures comparable to measured temperatures from molecular line emission. We find in two cases that a self-gravitating disc model compares well with observations. If these discs are self-gravitating, they satisfy the conditions for disc fragmentation in their outer regions. These systems may hence have as-yet-unresolved low-mass stellar companions, and are thus promising targets for future high angular resolution observations.PostprintPeer reviewe
    corecore