675 research outputs found

    L-lactic and 2-ketoglutaric Acids, Odors from Human Skin, Govern Attraction and Landing in Host-Seeking Female Aedes aegypti Mosquitoes

    Get PDF
    Aedes aegypti, presented with a source of L-lactic and 2-ketoglutaric acid in a wind-tunnel bioassay, takeoff, fly upwind, and land on the odorant substrate at rates comparable to those exhibited by mosquitoes presented with a skin-odor stimulus. Addition of carbon dioxide decreased takeoff latency but was not required to elicit upwind flight nor landings. Ketoglutaric acid, a recently identified component of human skin odor, combined with lactic acid elicits the full repertoire of mosquito host-seeking behaviors

    Discovery of 35 New Supernova Remnants in the Inner Galaxy

    Full text link
    We report the discovery of up to 35 new supernova remnants (SNRs) from a 42 arcsec resolution 90cm multi-configuration Very Large Array survey of the Galactic plane covering 4.5 deg< l <22.0 deg and |b| < 1.25 deg. Archival 20cm, 11cm, and 8 micron data have also been used to identify the SNRs and constrain their properties. The 90cm image is sensitive to SNRs with diameters 2.5 arcmin to 50 arcmin and down to a surface brightness limit of about 10^{-21} W m^{-2} Hz^{-1} sr^{-1}. This survey has nearly tripled the number of SNRs known in this part of the Galaxy, and represents an overall 15% increase in the total number of Galactic SNRs. These results suggest that further deep low frequency surveys of the inner Galaxy will solve the discrepancy between the expected number of Galactic SNRs and the significantly smaller number of currently known SNRs.Comment: 5 pages; Accepted to ApJL, high resolution figures available from http://www.ifa.hawaii.edu/~cbrogan/high_res

    Spatial and Temporal Variations in Small-Scale Galactic HI Structure Toward 3C~138

    Full text link
    We present three epochs of VLBA observations of Galactic HI absorption toward the quasar 3C~138 with resolutions of 20 mas (~ 10 AU). This analysis includes VLBA data from observations in 1999 and 2002 along with a reexamination of 1995 VLBA data. Improved data reduction and imaging techniques have led to an order of magnitude improvement in sensitivity compared to previous work. With these new data we confirm the previously detected milliarcsecond scale spatial variations in the HI opacity at the level of Delta(tau_{max}) =0.50 \pm 0.05. The typical size scale of the optical depth variations is ~ 50 mas or 25 AU. In addition, for the first time we see clear evidence for temporal variations in the HI opacity over the seven year time span of our three epochs of data. We also attempted to detect the magnetic field strength in the HI gas using the Zeeman effect. From this analysis we have been able to place a 3 sigma upper limit on the magnetic field strength per pixel of ~45 muG. We have also been able to calculate for the first time the plane of sky covering fraction of the small scale HI gas of ~10%. We also find that the line widths of the milliarcsecond sizescale HI features are comparable to those determined from previous single dish measurements toward 3C~138, suggesting that the opacity variations cannot be due to changes in the HI spin temperature. From these results we favor a density enhancement interpretation for the small scale HI structures, although these enhancements appear to be of short duration and are unlikely to be in equilibrium.Comment: 34 pages, 8 figures. Figures 3 & 4 are in color. Accepted to A

    Self-gravitating disc candidates around massive young stars

    Get PDF
    DHF gratefully acknowledges support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG. JDI gratefully acknowledges support from the DISCSIM project, grant agreement 341137, funded by the European Research Council under ERC-2013-ADG. CJC acknowledges support from STFC grant ST/M001296/1.There have been several recent detections of candidate Keplerian discs around massive young protostars. Given the relatively large disc-to-star mass ratios in these systems, and their young ages, it is worth investigating their propensity to becoming self-gravitating. To this end, we compute self-consistent, semi-analytic models of putative self-gravitating discs for five candidate disc systems. Our aim is not to fit exactly the observations, but to demonstrate that the expected dust continuum emission from marginally unstable self-gravitating discs can be quite weak, due to high optical depth at the mid-plane even at millimetre wavelengths. In the best cases, the models produce ‘observable’ disc masses within a factor of <1.5 of those observed, with mid-plane dust temperatures comparable to measured temperatures from molecular line emission. We find in two cases that a self-gravitating disc model compares well with observations. If these discs are self-gravitating, they satisfy the conditions for disc fragmentation in their outer regions. These systems may hence have as-yet-unresolved low-mass stellar companions, and are thus promising targets for future high angular resolution observations.PostprintPeer reviewe

    OH Zeeman Magnetic Field Detections Toward Five Supernova Remnants Using the VLA

    Full text link
    We have observed the OH (1720 MHz) line in five galactic SNRs with the VLA to measure their magnetic field strengths using the Zeeman effect. We detected all 12 of the bright (SÎœ>200S_{\nu} > 200 mJy) OH (1720 MHz) masers previously detected by Frail et al. (1996) and Green et al. (1997) and measured significant magnetic fields (i.e. >3σ > 3\sigma) in ten of them. Assuming that the ``thermal'' Zeeman equation can be used to estimate ∣B⃗∣\mid\vec{B}\mid for OH masers, our estimated fields range from 0.2 to 2 mG. These magnetic field strengths are consistent with the hypothesis that ambient molecular cloud magnetic fields are compressed via the SNR shock to the observed values. Magnetic fields of this magnitude exert a considerable influence on the properties of the cloud with the magnetic pressures (10−7−10−910^{-7} - 10^{-9} erg cm−3^{-3}) exceeding the pressure in the ISM or even the thermal pressure of the hot gas interior to the remnant. This study brings the number of galactic SNRs with OH (1720 MHz) Zeeman detections to ten.Comment: 23 pages, 14 figures, accepted to ApJ, for higher resolution images of Figs 4,11, and 12 see http://www.pa.uky.edu/~brogan/brog_publ.htm

    High-Resolution, Wide-Field Imaging of the Galactic Center Region at 330 MHz

    Get PDF
    We present a wide field, sub-arcminute resolution VLA image of the Galactic Center region at 330 MHz. With a resolution of ~ 7" X 12" and an RMS noise of 1.6 mJy/beam, this image represents a significant increase in resolution and sensitivity over the previously published VLA image at this frequency. The improved sensitivity has more than tripled the census of small diameter sources in the region, has resulted in the detection of two new Non Thermal Filaments (NTFs), 18 NTF candidates, 30 pulsar candidates, reveals previously known extended sources in greater detail, and has resulted in the first detection of Sagittarius A* in this frequency range. A version of this paper containing full resolution images may be found at http://lwa.nrl.navy.mil/nord/AAAB.pdf.Comment: Astronomical Journal, Accepted 62 Pages, 21 Figure

    Orion's Veil: Magnetic field strengths and other properties of a PDR in front of the Trapezium Cluster

    Get PDF
    We present an analysis of physical conditions in the Orion Veil, a largely atomic PDR that lies just in front (about 2 pc) of the Trapezium stars. We have obtained 21 cm HI and 18 cm OH VLA Zeeman effect data. These data yield images of the line-of-sight magnetic field strength Blos in atomic and molecular regions of the Veil. We find Blos is typically -50 to -75 microgauss in the atomic gas across much of the Veil (25" resolution); Blos is -350 microgauss at one position in the molecular gas (40" resolution). The Veil has two principal HI velocity components. Magnetic and kinematical data suggest a close connection between these components. They may represent gas on either side of a shock wave preceding a weak-D ionization front. Magnetic fields in the Veil HI components are 3-5 times stronger than they are elsewhere in the ISM where N(H) and n(H) are comparable. The HI components are magnetically subcritical (magnetically dominated), like the CNM, although they are about 1 dex denser. Strong fields in the Veil HI components may have resulted from low turbulence conditions in the diffuse gas that gave rise to OMC-1. Strong fields may also be related to magnetostatic equilibrium that has developed in the Veil since star formation. We consider the location of the Orion-S molecular core, proposing a location behind the main Orion H+ region.Comment: 44 pages, 11 figures, 4 tables, accepted by Ap

    Discovery of a 500 au protobinary in the massive prestellar core G11.92-0.61 MM2

    Get PDF
    Funding: C.J.C. acknowledges support from the University of St Andrews Restarting Research Funding Scheme (SARRF), which is funded through the SFC grant reference SFC/AN/08/020. J.D.I. acknowledges support from the UK’s STFC under ST/T000287/1. S.Z. is funded by the China Scholarship Council–University of St Andrews Scholarship (PhD programmes, No. 201806190010). T.J.H. is funded by a Royal Society Dorothy Hodgkin Fellowship.We present high-resolution ( 24.7 L⊙ for MM2E and L* > 12.6 L⊙ for MM2W. The compact sources are connected by a "bridge" of lower-surface-brightness dust emission and lie within more extended emission that may correspond to a circumbinary disk. The circumprotostellar gas mass, estimated from ~0.2" resolution VLA 0.9 cm observations assuming optically thin emission, is 6.8 ± 0.9 M⊙. No line emission is detected towards MM2E and MM2W in our high-resolution 1.3 mm ALMA observations. The only line detected is 13CO J=2-1, in absorption against the 1.3 mm continuum, which likely traces a layer of cooler molecular material surrounding the protostars. We also report the discovery of a highly asymmetric bipolar molecular outflow that appears to be driven by MM2E and/or MM2W in new deep, ~0.5" resolution (1680 au) ALMA 0.82 mm observations. This outflow, traced by low-excitation CH3OH emission, indicates ongoing accretion onto the protobinary system. Overall, the super-Alfvenic models of Mignon-Risse et al. (2021) agree well with the observed properties of the MM2E/MM2W protobinary, suggesting that this system may be forming in an environment with a weak magnetic field.Publisher PDFPeer reviewe

    Evidence for a Massive Protocluster in S255N

    Full text link
    S255N is a luminous far-infrared source that contains many indications of active star formation but lacks a prominent near-infrared stellar cluster. We present mid-infrared through radio observations aimed at exploring the evolutionary state of this region. Our observations include 1.3mm continuum and spectral line data from the Submillimeter Array, VLA 3.6cm continuum and 1.3cm water maser data, and multicolor IRAC images from the Spitzer Space Telescope. The cometary morphology of the previously-known UCHII region G192.584-0.041 is clearly revealed in our sensitive, multi-configuration 3.6cm images. The 1.3mm continuum emission has been resolved into three compact cores, all of which are dominated by dust emission and have radii < 7000AU. The mass estimates for these cores range from 6 to 35 Msun. The centroid of the brightest dust core (SMA1) is offset by 1.1'' (2800 AU) from the peak of the cometary UCHII region and exhibits the strongest HC3N, CN, and DCN line emission in the region. SMA1 also exhibits compact CH3OH, SiO, and H2CO emission and likely contains a young hot core. We find spatial and kinematic evidence that SMA1 may contain further multiplicity, with one of the components coincident with a newly-detected H2O maser. There are no mid-infrared point source counterparts to any of the dust cores, further suggesting an early evolutionary phase for these objects. The dominant mid-infrared emission is a diffuse, broadband component that traces the surface of the cometary UCHII region but is obscured by foreground material on its southern edge. An additional 4.5 micron linear feature emanating to the northeast of SMA1 is aligned with a cluster of methanol masers and likely traces a outflow from a protostar within SMA1. Our observations provide direct evidence that S255N is forming a cluster of intermediate to high-mass stars.Comment: 34 pages, 11 figures, accepted for publication in The Astronomical Journa

    Molecular line survey of the high-mass star-forming region NGC 6334I with Herschel/HIFI and the Submillimeter Array

    Get PDF
    Aims. We aim at deriving the molecular abundances and temperatures of the hot molecular cores in the high-mass star-forming region NGC 6334I and consequently deriving their physical and astrochemical conditions. Methods. In the framework of the Herschel guaranteed time key program CHESS (Chemical HErschel Surveys of Star forming regions), NGC 6334I is investigated by using the Heterodyne Instrument for the Far-Infrared (HIFI) aboard the Herschel Space Observatory. A spectral line survey is carried out in the frequency range 480–1907 GHz, and further auxiliary interferometric data from the Submillimeter Array (SMA) in the 230 GHz band provide spatial information for disentangling the different physical components contributing to the HIFI spectrum. The spectral lines in the processed Herschel data are identified with the aid of former surveys and spectral line catalogs. The observed spectrum is then compared to a simulated synthetic spectrum, assuming local thermal equilibrium, and best fit parameters are derived using a model optimization package. Results. A total of 46 molecules are identified, with 31 isotopologues, resulting in about 4300 emission and absorption lines. High-energy levels (E_u > 1000 K) of the dominant emitter methanol and vibrationally excited HCN (Îœ_2 = 1) are detected. The number of unidentified lines remains low with 75, or <2% of the lines detected. The modeling suggests that several spectral features need two or more components to be fitted properly. Other components could be assigned to cold foreground clouds or to outflows, most visible in the SiO and H_(2)O emission. A chemical variation between the two embedded hot cores is found, with more N-bearing molecules identified in SMA1 and O-bearing molecules in SMA2. Conclusions. Spectral line surveys give powerful insights into the study of the interstellar medium. Different molecules trace different physical conditions like the inner hot core, the envelope, the outflows or the cold foreground clouds. The derived molecular abundances provide further constraints for astrochemical models
    • 

    corecore