376 research outputs found

    The loss-limited electron energy in SN 1006: effects of the shock velocity and of the diffusion process

    Full text link
    The spectral shape of the synchrotron X-ray emission from SN 1006 reveals the fundamental role played by radiative losses in shaping the high-energy tail of the electron spectrum. We analyze data from the XMM-Newton SN 1006 Large Program and confirm that in both nonthermal limbs the loss-limited model correctly describes the observed spectra. We study the physical origin of the observed variations of the synchrotron cutoff energy across the shell. We investigate the role played by the shock velocity and by the electron gyrofactor. We found that the cutoff energy of the syncrotron X-ray emission reaches its maximum value in regions where the shock has experienced its highest average speed. This result is consistent with the loss-limited framework. We also find that the electron acceleration in both nonthermal limbs of SN 1006 proceeds close to the Bohm diffusion limit, the gyrofactor being in the range 1.5-4. We finally investigate possible explanations for the low values of cutoff energy measured in thermal limbs.Comment: Accepted for publication in Astronomische Nachrichten. Proceedings of the XMM-Newton Science Workshop 201

    Grounding power on actions and mental attitudes

    Get PDF
    International audienceThe main objective of this work is to develop a logic called IAL (Intentional Agency Logic) in which we can reason about mental states of agents, action occurrences, and agentive and group powers. IAL will be exploited for a formal analysis of different forms of power such as an agent i's power of achieving a certain result and an agent i's power over another agent j (alias social power)

    The shape of the cutoff in the synchrotron emission of SN 1006 observed with XMM-Newton

    Get PDF
    International audienceContext. Synchrotron X-ray emission from the rims of young supernova remnants allows us to study the high-energy tail of the electrons accelerated at the shock front.Aims. The analysis of X-ray spectra can provide information on the physical mechanisms that limit the energy achieved by the electrons in the acceleration process. We aim at verifying whether the maximum electron energy in SN 1006 is limited by synchrotron losses and at obtaining information on the shape of the cutoff in the X-ray synchrotron emission. Methods. We analyzed the deep observations of the XMM-Newton SN 1006 Large Program. We performed spatially resolved spectral analysis of a set of small regions in the nonthermal limbs and studied the X-ray spectra by adopting models that assume different electron spectra.Results. We found out that a loss-limited model provides the best fit to all the spectra and this indicates that the shape of the cutoff in the electron momentum (p) distribution has the form exp [ − (p/pcut)2]. We also detected residual thermal emission from shocked ambient medium and confirmed the reliability of previous estimates of the post-shock density.Conclusions. Our results indicate that radiative losses play a fundamental role in shaping the electron spectrum in SN 1006

    New distal marker closely linked to the fragile X locus

    Get PDF
    We have isolated II-10, a new X-chromosomal probe that identifies a highly informative two-allele TaqI restriction fragment length polymorphism at locus DXS466. Using somatic cell hybrids containing distinct portions of the long arm of the X chromosome, we could localize DXS466 between DXS296 and DXS304, both of which are closely linked distal markers for fragile X. This regional localization was supported by the analysis, in fragile X families, of recombination events between these three loci, the fragile X locus and locus DXS52, the latter being located at a more distal position. DXS466 is closely linked to the fragile X locus with a peak lod score of 7.79 at a recombination fraction of 0.02. Heterozygosity of DXS466 is approximately 50%. Its close proximity and relatively high informativity make DXS466 a valuable new diagnostic DNA marker for fragile X

    Apoptosis and p53 expression in rat adjuvant arthritis

    Get PDF
    INTRODUCTION: RA is a chronic inflammatory disorder that is characterized by inflammation and proliferation of synovial tissue. The amount of DNA fragmentation is significantly increased in rheumatoid synovium. Only low numbers of apoptotic cells are present in rheumatoid synovial tissue, however. The proportion of cells with DNA strand breaks is so great that this disparity suggests impaired apoptosis. Therefore, the development of novel therapeutic strategies that are aimed at inducing apoptosis in rheumatoid synovial tissue is an attractive goal. Although animal models for arthritis only approximate RA, they provide a useful test system for the evaluation of apoptosis-inducing therapies. AA in rats is among the most commonly used animal models for RA. For the interpretation of such studies, it is essential to characterize the extent to which apoptosis occurs during the natural course of the disease. Therefore, we evaluated the number of apoptotic cells and the expression of p53 in various phases of AA. MATERIALS AND METHODS: In order to generate the AA rat model, Lewis rats were immunized with Mycobacterium tuberculosis in mineral oil on day 0. Paw swelling usually started around day 10. For the temporal analysis rats were sacrificed on days 0, 5 (prearthritis), 11 (onset of arthritis), 17 (accelerating arthritis), or 23 (chronic arthritis). For the detection of apoptotic cells, the hind paws were harvested on days 0(n=6),5 (n=6), 11 (n=6), 17 (n=6), or 23 (n=4). The right ankle joints were fixed in formalin, decalcified in ethylenediaminetetra-acetic acid, embedded in paraffin, and sectioned. The TUNEL method was applied. The percentage of TUNEL-positive cells of the total inflammatory cell infiltrate was noted. For Western blot analysis, hind paws were harvested on days 0 (n=2), 5 (n=3), 11 (n=4), 17 (n=4), or 23 (n=4). In addition, hind paws of normal rats (n=2) were studied. The right ankle joints were snap frozen and pulverized. Synovial tissue was also obtained by arthroscopy of three patients with longstanding (>5 years) RA. After protein extraction in lysis buffer, equal amounts of protein samples from lysates were pooled and examined by Western bolt analysis using anti-p53 monoclonal antibody D07, which recognizes wild-type and mutant p53 from rodents and humans. For immunohistochemical analysis, six rats were sacrificed on day 23 after immunization and synovial tissue of the right ankle joints was snap frozen and evaluated by immunohistochemistry using anti-p53-pan. The sections were evaluated semi-quantitatively using a 0-4 scale. The kruskal-Wallis test for several group means was used to compare the percentage of TUNEL-positive cells at different time points. RESULTS: The percentages of TUNEL-positive cells were strongly dependent on the stage of the disease. Very few TUNEL-positive cells were detected in normal rats or in the early phases of AA; the number of TUNEL-positive cells was 1% or less of the total cell infiltrate, including neutrophils, from days 0-17 (Table 1). On day 23, however, the percentage of TUNEL-positive cells was significantly increased [15.8±5.1% (mean ± standard error of the mean); P=0.01]. TUNEL-positive cells were observed in the intimal lining layer and synovial sublining of the invasive front, as well as in the articular cartilage (Fig. 1). Subsequently, we examined expression of the tumor suppressor gene p53, because this is a key regulator of apoptosis. Expression of p53 in pooled rat AA joint extracts gradually increased from day 0 (6 arbitrary units) to day 23 (173 arbitrary units), which was markedly higher than p53 levels in RA synovium (32 arbitrary units; Table 1). Overexpression of p53 protein on day 23 was confirmed by immunohistochemistry in a separate experiment in six rats with AA. Overexpression of p53 was observed in the intimal lining layer and synovial sublining in all rats on day 23. In all cases a semiquantitative score of 4 was assigned, indicating that 51% or more of the cells were positive, whereas control sections were negative. DISCUSSION: The results presented here reveal that the number of TUNEL-positive cells remained very low until chronic arthritis developed. This indicates that, although there was sufficient DNA damage to cause an increment in p53 expression in the early phases, DNA strand breaks that can be detected by TUNEL assays only occurred in chronic AA. The observation that TUNEL-positive cells were nearly absent in early AA clearly indicates that only very few cells were undergoing programmed cell death. This is an important observation, which makes it possible to study the effects of apoptosis-inducing therapies in situ in early and accelerating AA. An effective therapy would obviously increase the number of TUNEL-positive cells. There is already some overexpression of p53 in the preclinical phase and during the onset of the arthritis, with an additional increment in p53 expression during accelerating and chronic arthritis. Presumably, this is wild-type p53, because the disease duration is likely too short to allow for the development of p53 mutations. Transcription of p53 is probably increased in response to the toxic environment of the inflamed joint. The increased expression of p53 in the joints of rats with chronic AA was even greater than that observed in synovial tissue of RA patients with long-standing disease. Overexpression of p53 and increased numbers of apoptotic cells did not occur simultaneously in this model; rather p53 overexpression preceded increased apoptosis. Activation of p53 leads to induction of cell growth arrest, allowing time for DNA repair. It appears that DNA damage is only extensive enough to induce apoptosis in the latter stages of AA. Factors other than p53 may also play an important role in the actual induction of apoptosis Taken together, significant apoptosis only occurs late in AA and it follows marked p53 overexpression, making it a useful model for testing proapoptotic therapies. AA is not the best model for p53 gene therapy, however, because dramatic p53 overexpression occurs in the latter stages of the disease

    An agent-based intelligent tutoring system for nurse education

    Get PDF
    This report describes the development of a teaching environment that uses agents to support learning. An Intelligent Tutoring System will be described, that guides students during learning. This system is meant for nurse education in the first place, but it is generic in the sense that the core is separated from the exercise modules and user interfaces. This means that the system can also be used for other (non-nursing) exercises. Exercises can be provided to the system in the form of XML data-files. A user interface can be text-based or 2D, but it can also be a 3D virtual reality environment. An application of the teaching environment for nurse training is described

    Neuroprotective effects of a specific multi-nutrient intervention against Aβ42-induced toxicity in rats

    Get PDF
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia in the elderly. Substantial evidence suggests a role for nutrition in the management of AD and especially suggests that interventions with combinations of nutrients are more effective than single-nutrient interventions. The specific multi-nutrient combination Fortasyn™Connect (FC), shown to improve memory in AD, provides phosphatide precursors and cofactors and is designed to stimulate the formation of phospholipids, neuronal membranes, and synapses. The composition comprises nucleotides, omega-3 polyunsaturated fatty acids (n3 PUFA), choline, B-vitamins, phospholipids, and antioxidants. The current study explored the protective properties of FC in a membrane toxicity model of AD, the amyloid-β 1-42 (Aβ42) infused rat, which shows reduced exploratory behavior in an Open Field and impaired cholinergic functioning. To this end, rats were fed an FC enriched diet or a control diet and five weeks later infused with vehicle or Aβ42 into the lateral ventricle. Ten weeks post-infusion Aβ42-rats fed the FC diet showed increased membrane n3 PUFA and phosphatidylcholine content while they did not show the reductions in exploratory behavior or in choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) immunoreactivity that were seen in Aβ42-rats fed the control diet. We conclude that FC protects the cholinergic system against Aβ42-induced toxicity and speculate that the effects of FC on membrane formation and composition might be supportive for this protective effect. Based on these data a long-term intervention study was started in the prodromal stages of AD (NTR1705, LipiDiDiet, EU FP7)
    • …
    corecore