128 research outputs found

    Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities

    Get PDF
    Background : Observational studies suggest higher pregnancy rates after the hysteroscopic removal of endometrial polyps, submucous fibroids, uterine septum or intrauterine adhesions, which are detectable in 10% to 15% of women seeking treatment for subfertility. Objectives : To assess the effects of the hysteroscopic removal of endometrial polyps, submucous fibroids, uterine septum or intrauterine adhesions suspected on ultrasound, hysterosalpingography, diagnostic hysteroscopy or any combination of thesemethods inwomenwith otherwise unexplained subfertility or prior to intrauterine insemination (IUI), in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI). Search methods : We searched theCochraneMenstrualDisorders and Subfertility SpecialisedRegister (8 September 2014), theCochrane Central Register of Controlled Trials (The Cochrane Library 2014, Issue 9), MEDLINE (1950 to 12 October 2014), EMBASE (inception to 12 October 2014), CINAHL (inception to 11 October 2014) and other electronic sources of trials including trial registers, sources of unpublished literature and reference lists. We handsearched the American Society for Reproductive Medicine (ASRM) conference abstracts and proceedings (from January 2013 to October 2014) and we contacted experts in the field. Selection criteria : Randomised comparisons between operative hysteroscopy versus control in women with otherwise unexplained subfertility or undergoing IUI, IVF or ICSI and suspected major uterine cavity abnormalities diagnosed by ultrasonography, saline infusion/ gel instillation sonography, hysterosalpingography, diagnostic hysteroscopy or any combination of these methods. Primary outcomes were live birth and hysteroscopy complications. Secondary outcomes were pregnancy and miscarriage. Data collection and analysis : Two review authors independently assessed studies for inclusion and risk of bias, and extracted data. We contacted study authors for additional information. Main results : We retrieved 12 randomised trials possibly addressing the research questions. Only two studies (309 women) met the inclusion criteria. Neither reported the primary outcomes of live birth or procedure related complications. In women with otherwise unexplained subfertility and submucous fibroids there was no conclusive evidence of a difference between the intervention group treated with hysteroscopic myomectomy and the control group having regular fertility-oriented intercourse during 12 months for the outcome of clinical pregnancy. A large clinical benefit with hysteroscopic myomectomy cannot be excluded: if 21% of women with fibroids achieve a clinical pregnancy having timed intercourse only, the evidence suggests that 39% of women (95% CI 21% to 58%) will achieve a successful outcome following the hysteroscopic removal of the fibroids (odds ratio (OR) 2.44, 95% confidence interval (CI) 0.97 to 6.17, P = 0.06, 94 women, very low quality evidence). There is no evidence of a difference between the comparison groups for the outcome of miscarriage (OR 0.58, 95% CI 0.12 to 2.85, P = 0.50, 30 clinical pregnancies in 94 women, very low quality evidence). The hysteroscopic removal of polyps prior to IUI can increase the chance of a clinical pregnancy compared to simple diagnostic hysteroscopy and polyp biopsy: if 28% of women achieve a clinical pregnancy with a simple diagnostic hysteroscopy, the evidence suggests that 63% of women (95% CI 50% to 76%) will achieve a clinical pregnancy after the hysteroscopic removal of the endometrial polyps (OR 4.41, 95% CI 2.45 to 7.96, P < 0.00001, 204 women, moderate quality evidence). Authors' conclusions : A large benefit with the hysteroscopic removal of submucous fibroids for improving the chance of clinical pregnancy in women with otherwise unexplained subfertility cannot be excluded. The hysteroscopic removal of endometrial polyps suspected on ultrasound in women prior to IUI may increase the clinical pregnancy rate. More randomised studies are needed to substantiate the effectiveness of the hysteroscopic removal of suspected endometrial polyps, submucous fibroids, uterine septum or intrauterine adhesions in women with unexplained subfertility or prior to IUI, IVF or ICSI

    Treating suspected uterine cavity abnormalities by hysteroscopy to improve reproductive outcome in women with unexplained infertility or prior to IUI, IVF, or ICSI

    Get PDF
    Endometrial polyps, submucous fibroids, uterine septa, and intrauterine adhesions can be found by ultrasound (US), HSG, hysteroscopy, or any combined in 10–15 % of infertile women. Observational studies suggest a better reproductive outcome when these anomalies are removed by operative hysteroscopy. The current Cochrane review assesses the effectiveness of hysteroscopy for treating these suspected anomalies in women with otherwise unexplained infertility or prior to intrauterine insemination, in vitro fertilization, or intracytoplasmic sperm injection

    Проблема развития финансовой системы Украины в условиях глобализации

    Get PDF
    Целью исследования является изучение взаимодействия фондовых рынков Восточной Европе на примере нескольких стран.Метою дослідження є вивчення взаємодії фондових ринків Східної Європи на прикладі декількох країн

    Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility

    Get PDF
    Background : Observational evidence suggests a potential benefit with several anti-adhesion therapies in women undergoing operative hysteroscopy (e.g. insertion of an intrauterine device or balloon, hormonal treatment, barrier gels or human amniotic membrane grafting) for decreasing intrauterine adhesions (IUAs). Objectives : To assess the effectiveness of anti-adhesion therapies versus placebo, no treatment or any other anti-adhesion therapy, following operative hysteroscopy for treatment of female subfertility. Search methods : We searched the following databases from inception to June 2017: the Cochrane Gynaecology and Fertility Group Specialised Register; the Cochrane Central Register of Studies (CRSO); MEDLINE; Embase; CINAHL and other electronic sources of trials, including trial registers, sources of unpublished literature and reference lists. We handsearched the Journal of Minimally Invasive Gynecology, and we contacted experts in the field. We also searched reference lists of appropriate papers. Selection criteria : Randomised controlled trials (RCTs) of anti-adhesion therapies versus placebo, no treatment or any other anti-adhesion therapy following operative hysteroscopy in subfertilewomen. The primary outcomewas live birth. Secondary outcomeswere clinical pregnancy, miscarriage and IUAs present at second-look hysteroscopy, along with mean adhesion scores and severity of IUAs. Data collection and analysis : Two review authors independently selected studies, assessed risk of bias, extracted data and evaluated quality of evidence using the GRADE method. Main results : The overall quality of the evidence was low to very low. The main limitations were serious risk of bias related to blinding of participants and personnel, indirectness and imprecision. We identified 16 RCTs comparing a device versus no treatment (two studies; 90 women), hormonal treatment versus no treatment or placebo (two studies; 136 women), device combined with hormonal treatment versus no treatment (one study; 20 women), barrier gel versus no treatment (five studies; 464 women), device with graft versus device without graft (three studies; 190 women), one type of device versus another device (one study; 201 women), gel combined with hormonal treatment and antibiotics versus hormonal treatment with antibiotics (one study; 52 women) and device combined with gel versus device (one study; 120 women). The total number of participants was 1273, but data on 1133 women were available for analysis. Only two of 16 studies included 100% infertile women; in all other studies, the proportion was variable or unknown. No study reported live birth, but some (five studies) reported outcomes that were used as surrogate outcomes for live birth (term delivery or ongoing pregnancy). Anti-adhesion therapy versus placebo or no treatment following operative hysteroscopy. There was insufficient evidence to determine whether therewas a difference between the use of a device or hormonal treatment compared to no treatment or placebo with respect to term delivery or ongoing pregnancy rates (odds ratio (OR) 0.94, 95% confidence interval (CI) 0.42 to 2.12; 107 women; 2 studies; I-2 = 0%; very-low-quality evidence). There were fewer IUAs at second-look hysteroscopy using a device with or without hormonal treatment or hormonal treatment or barrier gels compared with no treatment or placebo (OR 0.35, 95% CI 0.21 to 0.60; 560 women; 8 studies; I y = 0%; low-quality evidence). The number needed to treat for an additional beneficial outcome (NNTB) was 9 (95% CI 5 to 17). Comparisons of different anti-adhesion therapies following operative hysteroscopy : It was unclear whether there was a difference between the use of a device combined with graft versus device only for the outcome of ongoing pregnancy (OR 1.48, 95% CI 0.57 to 3.83; 180 women; 3 studies; I-2 = 0%; low-quality evidence). There were fewer IUAs at second-look hysteroscopy using a device with or without graft/gel or gel combined with hormonal treatment and antibiotics compared with using a device only or hormonal treatment combined with antibiotics, but the findings of this meta-analysis were affected by evidence quality (OR 0.55, 95% CI 0.36 to 0.83; 451 women; 5 studies; I-2 = 0%; low-quality evidence). Authors' conclusions : Implications for clinical practice : The quality of the evidence ranged from very low to low. The effectiveness of anti-adhesion treatment for improving key reproductive outcomes or for decreasing IUAs following operative hysteroscopy in subfertile women remains uncertain. Implications for research : More research is needed to assess the comparative safety and (cost-) effectiveness of different anti-adhesion treatments compared to no treatment or other interventions for improving key reproductive outcomes in subfertile women

    Управление финансовой устойчивостью и рентабельностью предприятия

    Get PDF
    Целью статьи является изучение значения управления финансовой устойчивостью и рентабельностью предприятия в современных условиях хозяйствования

    First effective mHealth nutrition and lifestyle coaching program for subfertile couples undergoing in vitro fertilization treatment:a single-blinded multicenter randomized controlled trial

    Get PDF
    Objective: To study compliance and effectiveness of the mHealth nutrition and lifestyle coaching program Smarter Pregnancy in couples undergoing in vitro fertilization (IVF) treatment with or without intracytoplasmic sperm injection (ICSI). Design: Multicenter, single-blinded, randomized controlled trial, conducted from July 2014 to March 2017. Setting: IVF clinics. Patient(s): A total of 626 women undergoing IVF treatment with or without ICSI and 222 male partners. Interventions(s): Couples were randomly assigned to the light (control group) or regular (intervention group) Smarter Pregnancy program. Both groups filled out a baseline screening questionnaire on nutrition and lifestyle behaviors, and the intervention group received coaching tailored to inadequate behaviors during the 24-week period. Main Outcome Measure(s): Difference in improvement of a composite dietary and lifestyle risk score for the intake of vegetables, fruits, folic acid supplements, smoking, and alcohol use after 24 weeks of the program. Result(s): Compared with control subjects, women and men in the intervention group showed a significantly larger improvement of inadequate nutrition behaviors after 24 weeks of coaching. At the same time, the women also showed a significantly larger improvement of inadequate lifestyle behaviors. Conclusion(s): The mHealth coaching program Smarter Pregnancy is effective and improves the most important nutritional and lifestyle behaviors among couples undergoing IVF/ICSI treatment. International multicenter randomized trials are recommended to study the effect of using Smarter Pregnancy on pregnancy, live birth, and neonatal outcome. ((C)2020 by American Society for Reproductive Medicine.)y

    Lifestyle intervention prior to IVF does not improve embryo utilization rate and cumulative live birth rate in women with obesity:a nested cohort study

    Get PDF
    STUDY QUESTION: Does lifestyle intervention consisting of an energy-restricted diet, enhancement of physical activity and motivational counseling prior to IVF improve embryo utilization rate (EUR) and cumulative live birth rate (CLBR) in women with obesity? SUMMARY ANSWER: A 6-month lifestyle intervention preceding IVF improved neither EUR nor CLBR in women with obesity in the first IVF treatment cycle where at least one oocyte was retrieved. WHAT IS KNOWN ALREADY: A randomized controlled trial (RCT) evaluating the efficacy of a low caloric liquid formula diet (LCD) preceding IVF in women with obesity was unable to demonstrate an effect of LCD on embryo quality and live birth rate: in this study, only one fresh embryo transfer (ET) or, in case of freeze-all strategy, the first transfer with frozen-thawed embryos was reported. We hypothesized that any effect on embryo quality of a lifestyle intervention in women with obesity undergoing IVF treatment is better revealed by EUR and CLBR after transfer of all fresh and frozen-thawed embryos. STUDY DESIGN, SIZE, DURATION: This is a nested cohort study within an RCT, the LIFEstyle study. The original study examined whether a 6-month lifestyle intervention prior to infertility treatment in women with obesity improved live birth rate, compared to prompt infertility treatment within 24 months after randomization. In the original study between 2009 and 2012, 577 (three women withdrew informed consent) women with obesity and infertility were assigned to a lifestyle intervention followed by infertility treatment (n = 289) or to prompt infertility treatment (n = 285). PARTICIPANTS/MATERIALS, SETTING, METHODS: Only participants from the LIFEstyle study who received IVF treatment were eligible for the current analysis. In total, 137 participants (n = 58 in the intervention group and n = 79 in the control group) started the first cycle. In 25 participants, the first cycle was cancelled prior to oocyte retrieval mostly due to poor response. Sixteen participants started a second or third consecutive cycle. The first cycle with successful oocyte retrieval was used for this analysis, resulting in analysis of 51 participants in the intervention group and 72 participants in the control group. Considering differences in embryo scoring methods and ET day strategy between IVF centers, we used EUR as a proxy for embryo quality. EUR was defined as the proportion of inseminated/injected oocytes per cycle that was transferred or cryopreserved as an embryo. Analysis was performed per cycle and per oocyte/embryo. CLBR was defined as the percentage of participants with at least one live birth from the first fresh and subsequent frozen-thawed ET(s). In addition, we calculated the Z-score for singleton neonatal birthweight and compared these outcomes between the two groups. MAIN RESULTS AND THE ROLE OF CHANCE: The overall mean age was 31.6 years and the mean BMI was 35.4 ± 3.2 kg/m(2) in the intervention group, and 34.9 ± 2.9 kg/m(2) in the control group. The weight change at 6 months was in favor of the intervention group (mean difference in kg vs the control group: −3.14, 95% CI: −5.73 to −0.56). The median (Q25; Q75) number of oocytes retrieved was 4.00 (2.00; 8.00) in the intervention group versus 6.00 (4.00; 9.75) in the control group, and was not significantly different, as was the number of oocytes inseminated/injected (4.00 [2.00; 8.00] vs 6.00 [3.00; 8.75]), normal fertilized embryos (2.00 [0.50; 5.00] vs 3.00 [1.00; 5.00]) and the number of cryopreserved embryos (2.00 [1.25; 4.75] vs 2.00 [1.00; 4.00]). The median (Q25; Q75) EUR was 33.3% (12.5%; 60.0%) in the intervention group and 33.3% (16.7%; 50.0%) in the control group in the per cycle analysis (adjusted B: 2.7%, 95% CI: −8.6% to 14.0%). In the per oocyte/embryo analysis, in total, 280 oocytes were injected or inseminated in the intervention group, 113 were utilized (transferred or cryopreserved, EUR = 40.4%); in the control group, EUR was 30.8% (142/461). The lifestyle intervention did not significantly improve EUR (adjusted odds ratio [OR]: 1.36, 95% CI: 0.94–1.98) in the per oocyte/embryo analysis, taking into account the interdependency of the oocytes per participant. CLBR was not significantly different between the intervention group and the control group after adjusting for type of infertility (male factor and unexplained) and smoking (27.5% vs 22.2%, adjusted OR: 1.03, 95% CI: 0.43–2.47). Singleton neonatal birthweight and Z-score were not significantly different between the two groups. LIMITATIONS, REASONS FOR CAUTION: This study is a nested cohort study within an RCT, and no power calculation was performed. The randomization was not stratified for indicated treatment, and although we corrected our analyses for baseline differences, there may be residual confounding. The limited absolute weight loss and the short duration of the lifestyle intervention might be insufficient to affect EUR and CLBR. WIDER IMPLICATIONS OF THE FINDINGS: Our data do not support the hypothesis of a beneficial short-term effect of lifestyle intervention on EUR and CLBR after IVF in women with obesity, although more studies are needed as there may be a potential clinically relevant effect on EUR. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by a grant from ZonMw, the Dutch Organization for Health Research and Development (50-50110-96-518). A.H. has received an unrestricted educational grant from Ferring pharmaceuticals BV, The Netherlands. B.W.J.M. is supported by an NHMRC Investigator grant (GNT1176437). B.W.J.M. reports consultancy for Guerbet, has been a member of the ObsEva advisory board and holds Stock options for ObsEva. B.W.J.M. has received research funding from Guerbet, Ferring and Merck. F.J.M.B. reports personal fees from membership of the external advisory board for Merck Serono and a research support grant from Merck Serono, outside the submitted work. TRIAL REGISTRATION NUMBER: The LIFEstyle RCT was registered at the Dutch trial registry (NTR 1530). https://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1530

    Individual patient data meta-analysis of diagnostic and prognostic studies in obstetrics, gynaecology and reproductive medicine

    Get PDF
    BACKGROUND: In clinical practice a diagnosis is based on a combination of clinical history, physical examination and additional diagnostic tests. At present, studies on diagnostic research often report the accuracy of tests without taking into account the information already known from history and examination. Due to this lack of information, together with variations in design and quality of studies, conventional meta-analyses based on these studies will not show the accuracy of the tests in real practice. By using individual patient data (IPD) to perform meta-analyses, the accuracy of tests can be assessed in relation to other patient characteristics and allows the development or evaluation of diagnostic algorithms for individual patients. In this study we will examine these potential benefits in four clinical diagnostic problems in the field of gynaecology, obstetrics and reproductive medicine. METHODS/DESIGN: Based on earlier systematic reviews for each of the four clinical problems, studies are considered for inclusion. The first authors of the included studies will be invited to participate and share their original data. After assessment of validity and completeness the acquired datasets are merged. Based on these data, a series of analyses will be performed, including a systematic comparison of the results of the IPD meta-analysis with those of a conventional meta-analysis, development of multivariable models for clinical history alone and for the combination of history, physical examination and relevant diagnostic tests and development of clinical prediction rules for the individual patients. These will be made accessible for clinicians. DISCUSSION: The use of IPD meta-analysis will allow evaluating accuracy of diagnostic tests in relation to other relevant information. Ultimately, this could increase the efficiency of the diagnostic work-up, e.g. by reducing the need for invasive tests and/or improving the accuracy of the diagnostic workup. This study will assess whether these benefits of IPD meta-analysis over conventional meta-analysis can be exploited and will provide a framework for future IPD meta-analyses in diagnostic and prognostic research

    Cumulative live birth rates in low-prognosis women

    Get PDF
    STUDY QUESTION: Do cumulative live birth rates (CLBRs) over multiple IVF/ICSI cycles confirm the low prognosis in women stratified according to the POSEIDON criteria? SUMMARY ANSWER: The CLBR of low-prognosis women is ~56% over 18 months of IVF/ICSI treatment and varies between the POSEIDON groups, which is primarily attributable to the impact of female age. WHAT IS KNOWN ALREADY: The POSEIDON group recently proposed a new stratification for low-prognosis women in IVF/ICSI treatment, with the aim to define more homogenous populations for clinical trials and stimulate a patient-tailored therapeutic approach. These new criteria combine qualitative and quantitative parameters to create four groups of low-prognosis women with supposedly similar biologic characteristics. STUDY DESIGN, SIZE, DURATION: This study analyzed the data of a Dutch multicenter observational cohort study including 551 low-prognosis women, aged <44 years, who initiated IVF/ICSI treatment between 2011 and 2014 and were treated with a fixed FSH dose of 150 IU/day in the first treatment cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS: Low-prognosis women were categorized into one of the POSEIDON groups based on their age (younger or older than 35 years), anti-Müllerian hormone (AMH) level (above or below 0.96 ng/ml), and the ovarian response (poor or suboptimal) in their first cycle of standard stimulation. The primary outcome was the CLBR over multiple complete IVF/ICSI cycles, including all subsequent fresh and frozen-thawed embryo transfers, within 18 months of treatment. Cumulative incidence curves were obtained using an optimistic and a conservative analytic approach. MAIN RESULTS AND THE ROLE OF CHANCE: The CLBR of the low-prognosis women was on average ~56% over 18 months of IVF/ICSI treatment. Younger unexpected poor (n = 38) and suboptimal (n = 179) responders had a CLBR of ~65% and ~68%, respectively, and younger expected poor responders (n = 65) had a CLBR of ~59%. The CLBR of older unexpected poor (n = 41) and suboptimal responders (n = 102) was ~42% and ~54%, respectively, and of older expected poor responders (n = 126) ~39%. For comparison, the CLBR of younger (n = 164) and older (n = 78) normal responders with an adequate ovarian reserve was ~72% and ~58% over 18 months of treatment, respectively. No large differences were observed in the number of fresh treatment cycles between the POSEIDON groups, with an average of two fresh cycles per woman within 18 months of follow-up. LIMITATIONS, REASONS FOR CAUTION: Small numbers in some (sub)groups reduced the precision of the estimates. However, our findings provide the first relevant indication of the CLBR of low-prognosis women in the POSEIDON groups. Small FSH dose adjustments between cycles were allowed, inducing therapeutic disparity. Yet, this is in accordance with current daily practice and increases the generalizability of our findings. WIDER IMPLICATIONS OF THE FINDINGS: The CLBRs vary between the POSEIDON groups. This heterogeneity is primarily determined by a woman's age, reflecting the importance of oocyte quality. In younger women, current IVF/ICSI treatment reaches relatively high CLBR over multiple complete cycles, despite reduced quantitative parameters. In older women, the CLBR remains relatively low over multiple complete cycles, due to the co-occurring decline in quantitative and qualitative parameters. As no effective interventions exist to counteract this decline, clinical management currently relies on proper counselling. STUDY FUNDING/COMPETING INTEREST(S): No external funds were obtained for this study. J.A.L. is supported by a Research Fellowship grant and received an unrestricted personal grant from Merck BV. S.C.O., T.C.v.T., and H.L.T. received an unrestricted personal grant from Merck BV. C.B.L. received research grants from Merck, Ferring, and Guerbet. K.F. received unrestricted research grants from Merck Serono, Ferring, and GoodLife. She also received fees for lectures and consultancy from Ferring and GoodLife. A.H. declares that the Department of Obstetrics and Gynaecology, University Medical Centre Groningen received an unrestricted research grant from Ferring Pharmaceuticals BV, the Netherlands. J.S.E.L. has received unrestricted research grants from Ferring, Zon-MW, and The Dutch Heart Association. He also received travel grants and consultancy fees from Danone, Euroscreen, Ferring, AnshLabs, and Titus Healthcare. B.W.J.M. is supported by an National Health and Medical Research Council Practitioner Fellowship (GNT1082548) and reports consultancy work for ObsEva, Merck, and Guerbet. He also received a research grant from Merck BV and travel support from Guerbet. F.J.M.B. received monetary compensation as a member of the external advisory board for Merck Serono (the Netherlands) and Ferring Pharmaceuticals BV (the Netherlands) for advisory work for Gedeon Richter (Belgium) and Roche Diagnostics on automated AMH assay development, and for a research cooperation with Ansh Labs (USA). All other authors have nothing to declare. TRIAL REGISTRATION NUMBER: Not applicable

    Genome-wide association study meta-analysis identifies three novel loci for circulating anti-Müllerian hormone levels in women

    Get PDF
    STUDY QUESTION: Can additional genetic variants for circulating anti-Müllerian hormone (AMH) levels be identified through a genome-wide association study (GWAS) meta-analysis including a large sample of premenopausal women? SUMMARY ANSWER: We identified four loci associated with AMH levels at P < 5 × 10(−8): the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 and CDCA7. WHAT IS KNOWN ALREADY: AMH is expressed by antral stage ovarian follicles in women, and variation in age-specific circulating AMH levels has been associated with disease outcomes. However, the physiological mechanisms underlying these AMH-disease associations are largely unknown. STUDY DESIGN, SIZE, DURATION: We performed a GWAS meta-analysis in which we combined summary statistics of a previous AMH GWAS with GWAS data from 3705 additional women from three different cohorts. PARTICIPANTS/MATERIALS, SETTING, METHODS: In total, we included data from 7049 premenopausal female participants of European ancestry. The median age of study participants ranged from 15.3 to 48 years across cohorts. Circulating AMH levels were measured in either serum or plasma samples using different ELISA assays. Study-specific analyses were adjusted for age at blood collection and population stratification, and summary statistics were meta-analysed using a standard error-weighted approach. Subsequently, we functionally annotated GWAS variants that reached genome-wide significance (P < 5 × 10(−8)). We also performed a gene-based GWAS, pathway analysis and linkage disequilibrium score regression and Mendelian randomization (MR) analyses. MAIN RESULTS AND THE ROLE OF CHANCE: We identified four loci associated with AMH levels at P < 5 × 10(−8): the previously reported MCM8 locus and three novel signals in or near AMH, TEX41 and CDCA7. The strongest signal was a missense variant in the AMH gene (rs10417628). Most prioritized genes at the other three identified loci were involved in cell cycle regulation. Genetic correlation analyses indicated a strong positive correlation among single nucleotide polymorphisms for AMH levels and for age at menopause (r(g) = 0.82, FDR = 0.003). Exploratory two-sample MR analyses did not support causal effects of AMH on breast cancer or polycystic ovary syndrome risk, but should be interpreted with caution as they may be underpowered and the validity of genetic instruments could not be extensively explored. LARGE SCALE DATA: The full AMH GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Whilst this study doubled the sample size of the most recent GWAS, the statistical power is still relatively low. As a result, we may still lack power to identify more genetic variants for AMH and to determine causal effects of AMH on, for example, breast cancer. Also, follow-up studies are needed to investigate whether the signal for the AMH gene is caused by reduced AMH detection by certain assays instead of actual lower circulating AMH levels. WIDER IMPLICATIONS OF THE FINDINGS: Genes mapped to the MCM8, TEX41 and CDCA7 loci are involved in the cell cycle and processes such as DNA replication and apoptosis. The mechanism underlying their associations with AMH may affect the size of the ovarian follicle pool. Altogether, our results provide more insight into the biology of AMH and, accordingly, the biological processes involved in ovarian ageing. STUDY FUNDING/COMPETING INTEREST(S): Nurses’ Health Study and Nurses’ Health Study II were supported by research grants from the National Institutes of Health (CA172726, CA186107, CA50385, CA87969, CA49449, CA67262, CA178949). The UK Medical Research Council and Wellcome (217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This publication is the work of the listed authors, who will serve as guarantors for the contents of this article. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). Funding for the collection of genotype and phenotype data used here was provided by the British Heart Foundation (SP/07/008/24066), Wellcome (WT092830M and WT08806) and UK Medical Research Council (G1001357). M.C.B., A.L.G.S. and D.A.L. work in a unit that is funded by the University of Bristol and UK Medical Research Council (MC_UU_00011/6). M.C.B.’s contribution to this work was funded by a UK Medical Research Council Skills Development Fellowship (MR/P014054/1) and D.A.L. is a National Institute of Health Research Senior Investigator (NF-0616-10102). A.L.G.S. was supported by the study of Dynamic longitudinal exposome trajectories in cardiovascular and metabolic non-communicable diseases (H2020-SC1-2019-Single-Stage-RTD, project ID 874739). The Doetinchem Cohort Study was financially supported by the Ministry of Health, Welfare and Sports of the Netherlands. The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Ansh Labs performed the AMH measurements for the Doetinchem Cohort Study free of charge. Ansh Labs was not involved in the data analysis, interpretation or reporting, nor was it financially involved in any aspect of the study. R.M.G.V. was funded by the Honours Track of MSc Epidemiology, University Medical Center Utrecht with a grant from the Netherlands Organization for Scientific Research (NWO) (022.005.021). The Study of Women's Health Across the Nation (SWAN) has grant support from the National Institutes of Health (NIH), DHHS, through the National Institute on Aging (NIA), the National Institute of Nursing Research (NINR) and the NIH Office of Research on Women’s Health (ORWH) (U01NR004061; U01AG012505, U01AG012535, U01AG012531, U01AG012539, U01AG012546, U01AG012553, U01AG012554, U01AG012495). The SWAN Genomic Analyses and SWAN Legacy have grant support from the NIA (U01AG017719). The Generations Study was funded by Breast Cancer Now and the Institute of Cancer Research (ICR). The ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent official views of the funders. The Sister Study was funded by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Environmental Health Sciences (Z01-ES044005 to D.P.S.); the AMH assays were supported by the Avon Foundation (02-2012-065 to H.B. Nichols and D.P.S.). The breast cancer genome-wide association analyses were supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the ‘Ministère de l’Économie, de la Science et de l’Innovation du Québec’ through Genome Québec and grant PSR-SIIRI-701, The National Institutes of Health (U19 CA148065, X01HG007492), Cancer Research UK (C1287/A10118, C1287/A16563, C1287/A10710) and The European Union (HEALTH-F2-2009-223175 and H2020 633784 and 634935). All studies and funders are listed in Michailidou et al. (Nature, 2017). F.J.M.B. has received fees and grant support from Merck Serono and Ferring BV. D.A.L. has received financial support from several national and international government and charitable funders as well as from Medtronic Ltd and Roche Diagnostics for research that is unrelated to this study. N.S. is scientific consultant for Ansh Laboratories. The other authors declare no competing interests
    corecore