11 research outputs found

    The diverse molecular profiles of lynch syndrome-associated colorectal cancers are (highly) dependent on underlying germline mismatch repair mutations

    Get PDF
    Lynch syndrome (LS) is a hereditary cancer syndrome that accounts for 3% of all new colorectal cancer (CRC) cases. Patients carry a germline pathogenic variant in one of the mismatch repair (MMR) genes (MLH1, MSH2, MSH6 or PMS2), which encode proteins involved in a post-replicative proofreading and editing mechanism. The clinical presentation of LS is highly heterogeneous, showing high variability in age at onset and penetrance of cancer, which may be partly attributable to the molecular profiles of carcinomas. This review discusses the frequency of alterations in the WNT/B-CATENIN, RAF/MEK/ERK and PI3K/PTEN/AKT pathways identified in all four LS subgroups and how these changes may relate to the 'three pathway model' of carcinogenesis, in which LS CRCs develop from MMR-proficient adenomas, MMR-deficient adenomas or directly from MMR-deficient crypts. Understanding the specific differences in carcinogenesis for each LS subgroup will aid in the further optimization of guidelines for diagnosis, surveillance and treatment.Molecular tumour pathology - and tumour geneticsMTG2 - Moleculaire genetica van gastrointestinale tumore

    The coding microsatellite mutation profile of PMS2-deficient colorectal cancer

    Get PDF
    Lynch syndrome (LS) is caused by a pathogenic heterozygous germline variant in one of the DNA mismatch repair (MMR) genes: MLH1, MSH2, MSH6 or PMS2. LS-associated colorectal carcinomas (CRCs) are characterized by MMR deficiency and by accumulation of multiple insertions/deletions at coding microsatellites (cMS). MMR deficiency-induced variants at defined cMS loci have a driver function and promote tumorigenesis. Notably, PMS2 variant carriers face only a slightly increased risk of developing CRC. Here, we investigate whether this lower penetrance is also reflected by differences in molecular features and cMS variant patterns. Tumor DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue cores or sections (n = 90). Tumors originated from genetically proven germline pathogenic MMR variant carriers (including 14 PMS2-deficient tumors). The mutational spectrum was analyzed using fluorescently labeled primers specific for 18 cMS previously described as mutational targets in MMR-deficient tumors. Immune cell infiltration was analyzed by immunohistochemical detection of T-cells on FFPE tissue sections. The cMS spectrum of PMS2-deficient CRCs did not show any sig-nificant differences from MLH1/MSH2-deficient CRCs. PMS2-deficient tumors, however, displayed lower CD3-positive T-cell infiltration compared to other MMR-deficient cancers (28.00 vs. 55.00 per 0.1 mm(2), p = 0.0025). Our study demonstrates that the spectrum of potentially immunogenic cMS variants in CRCs from PMS2 gene variant carriers is similar to that observed in CRCs from other MMR gene variant carriers. Lower immune cell infiltration observed in PMS2-deficient CRCs could be the result of alternative mechanisms of immune evasion or immune cell exclusion, similar to those seen in MMR-proficient tumors.Hereditary cancer genetic

    Dominantly inherited micro-satellite instable cancer – the four Lynch syndromes - an EHTG, PLSD position statement

    Get PDF
    The recognition of dominantly inherited micro-satellite instable (MSI) cancers caused by pathogenic variants in one of the four mismatch repair (MMR) genes MSH2, MLH1, MSH6 and PMS2 has modified our understanding of carcinogenesis. Inherited loss of function variants in each of these MMR genes cause four dominantly inherited cancer syndromes with different penetrance and expressivities: the four Lynch syndromes. No person has an “average sex “or a pathogenic variant in an “average Lynch syndrome gene” and results that are not stratified by gene and sex will be valid for no one. Carcinogenesis may be a linear process from increased cellular division to localized cancer to metastasis. In addition, in the Lynch syndromes (LS) we now recognize a dynamic balance between two stochastic processes: MSI producing abnormal cells, and the host’s adaptive immune system’s ability to remove them. The latter may explain why colonoscopy surveillance does not reduce the incidence of colorectal cancer in LS, while it may improve the prognosis. Most early onset colon, endometrial and ovarian cancers in LS are now cured and most cancer related deaths are after subsequent cancers in other organs. Aspirin reduces the incidence of colorectal and other cancers in LS. Immunotherapy increases the host immune system’s capability to destroy MSI cancers. Colonoscopy surveillance, aspirin prevention and immunotherapy represent major steps forward in personalized precision medicine to prevent and cure inherited MSI cancer

    The coding microsatellite mutation profile of PMS2-deficient colorectal cancer

    Get PDF
    Lynch syndrome (LS) is caused by a pathogenic heterozygous germline variant in one of the DNA mismatch repair (MMR) genes: MLH1, MSH2, MSH6 or PMS2. LS-associated colorectal carcinomas (CRCs) are characterized by MMR deficiency and by accumulation of multiple insertions/deletions at coding microsatellites (cMS). MMR deficiency-induced variants at defined cMS loci have a driver function and promote tumorigenesis. Notably, PMS2 variant carriers face only a slightly increased risk of developing CRC. Here, we investigate whether this lower penetrance is also reflected by differences in molecular features and cMS variant patterns. Tumor DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue cores or sections (n = 90). Tumors originated from genetically proven germline pathogenic MMR variant carriers (including 14 PMS2-deficient tumors). The mutational spectrum was analyzed using fluorescently labeled primers specific for 18 cMS previously described as mutational targets in MMR-deficient tumors. Immune cell infiltration was analyzed by immunohistochemical detection of T-cells on FFPE tissue sections. The cMS spectrum of PMS2-deficient CRCs did not show any significant differences from MLH1/MSH2-deficient CRCs. PMS2-deficient tumors, however, displayed lower CD3-positive T-cell infiltration compared to other MMR-deficient cancers (28.00 vs. 55.00 per 0.1 mm2, p = 0.0025). Our study demonstrates that the spectrum of potentially immunogenic cMS variants in CRCs from PMS2 gene variant carriers is similar to that observed in CRCs from other MMR gene variant carriers. Lower immune cell infiltration observed in PMS2-deficient CRCs could be the result of alternative mechanisms of immune evasion or immune cell exclusion, similar to those seen in MMR-proficient tumors.</p

    PMS2-associated Lynch syndrome: Past, present and future

    Get PDF
    Carriers of any pathogenic variant in one of the MMR genes (path_MMR carriers) were traditionally thought to be at comparable risk of developing a range of different malignancies, foremost colorectal cancer (CRC) and endometrial cancer. However, it is now widely accepted that their cancer risk and cancer spectrum range notably depending on which MMR gene is affected. Moreover, there is increasing evidence that the MMR gene affected also influences the molecular pathogenesis of Lynch syndrome CRC. Although substantial progress has been made over the past decade in understanding these differences, many questions remain unanswered, especially pertaining to path_PMS2 carriers. Recent findings show that, while the cancer risk is relatively low, PMS2-deficient CRCs tend to show more aggressive behaviour and have a worse prognosis than other MMR-deficient CRCs. This, together with lower intratumoral immune infiltration, suggests that PMS2-deficient CRCs might have more in common biologically with sporadic MMR-proficient CRCs than with other MMR-deficient CRCs. These findings could have important consequences for surveillance, chemoprevention and therapeutic strategies (e.g. vaccines). In this review we discuss the current knowledge, current (clinical) challenges and knowledge gaps that should be targeted by future studies

    MLH1 Promotor Hypermethylation in Colorectal and Endometrial Carcinomas from Patients with Lynch Syndrome

    Get PDF
    Screening for Lynch syndrome (LS) in colorectal cancer (CRC) and endometrial cancer patients generally involves immunohistochemical staining of the mismatch repair (MMR) proteins. In case of MLH1 protein loss, MLH1 promotor hypermethylation (MLH1-PM) testing is performed to indirectly distinguish the constitutional MLH1 variants from somatic epimutations. Recently, multiple studies have reported that MLH1-PM and pathogenic constitutional MMR variants are not mutually exclusive. This study describes 6 new and 86 previously reported MLH1-PM CRCs or endometrial cancers in LS patients. Of these, methylation of the MLH1 gene promotor C region was reported in 30 MLH1, 6 MSH2, 6 MSH6, and 3 PMS2 variant carriers at a median age at diagnosis of 48.5 years [interquartile range (IQR), 39–56.75 years], 39 years (IQR, 29–51 years), 58 years (IQR, 53.5–67 years), and 68 years (IQR, 65.6–68.5 years), respectively. For 31 MLH1-PM CRCs in LS patients from the literature, only the B region of the MLH1 gene promotor was tested, whereas for 13 cases in the literature the tested region was not specified. Collectively, these data indicate that a diagnosis of LS should not be excluded when MLH1-PM is detected. Clinicians should carefully consider whether follow-up genetic MMR gene testing should be offered, with age &lt;60 to 70 years and/or a positive family history among other factors being suggestive for a potential constitutional MMR gene defect.</p

    MLH1 Promotor Hypermethylation in Colorectal and Endometrial Carcinomas from Patients with Lynch Syndrome

    Get PDF
    Screening for Lynch syndrome (LS) in colorectal cancer (CRC) and endometrial cancer patients generally involves immunohistochemical staining of the mismatch repair (MMR) proteins. In case of MLH1 protein loss, MLH1 promotor hypermethylation (MLH1-PM) testing is performed to indirectly distinguish the constitutional MLH1 variants from somatic epimutations. Recently, multiple studies have reported that MLH1-PM and pathogenic constitutional MMR variants are not mutually exclusive. This study describes 6 new and 86 previously reported MLH1-PM CRCs or endometrial cancers in LS patients. Of these, methylation of the MLH1 gene promotor C region was reported in 30 MLH1, 6 MSH2, 6 MSH6, and 3 PMS2 variant carriers at a median age at diagnosis of 48.5 years [interquartile range (IQR), 39–56.75 years], 39 years (IQR, 29–51 years), 58 years (IQR, 53.5–67 years), and 68 years (IQR, 65.6–68.5 years), respectively. For 31 MLH1-PM CRCs in LS patients from the literature, only the B region of the MLH1 gene promotor was tested, whereas for 13 cases in the literature the tested region was not specified. Collectively, these data indicate that a diagnosis of LS should not be excluded when MLH1-PM is detected. Clinicians should carefully consider whether follow-up genetic MMR gene testing should be offered, with age &lt;60 to 70 years and/or a positive family history among other factors being suggestive for a potential constitutional MMR gene defect.</p

    Discordant Staining Patterns and Microsatellite Results in Tumors of MSH6 Pathogenic Variant Carriers

    Get PDF
    Diagnosis of Lynch syndrome (LS) caused by a pathogenic germline MSH6 variant may be complicated by discordant immunohistochemistry (IHC) and/or by a microsatellite stable (MSS) phenotype. This study aimed to identify the various causes of the discordant phenotypes of colorectal cancer (CRC) and endometrial cancer (EC) in MSH6-associated LS. Data were collected from Dutch family cancer clinics. Carriers of a (likely) pathogenic MSH6 variant diagnosed with CRC or EC were categorized based on an microsatellite instability (MSI)/IHC test outcome that might fail to result in a diagnosis of LS (eg, retained staining of all 4 mismatch repair proteins, with or without an MSS phenotype, and other staining patterns). When tumor tissue was available, MSI and/or IHC were repeated. Next-generation sequencing (NGS) was performed in cases with discordant staining patterns. Data were obtained from 360 families with 1763 (obligate) carriers. MSH6 variant carriers with CRC or EC (n = 590) were included, consisting of 418 CRCs and 232 ECs. Discordant staining was reported in 77 cases (36% of MSI/IHC results). Twelve patients gave informed consent for further analysis of tumor material. Upon revision, 2 out of 3 MSI/IHC cases were found to be concordant with the MSH6 variant, and NGS showed that 4 discordant IHC results were sporadic rather than LS-associated tumors. In 1 case, somatic events explained the discordant phenotype. The use of reflex IHC mismatch repair testing, the current standard in most Western countries, may lead to the misdiagnosis of germline MSH6 variant carriers. The pathologist should point out that further diagnostics for inheritable colon cancer, including LS, should be considered in case of a strong positive family history. Germline DNA analysis of the mismatch repair genes, preferably as part of a larger gene panel, should therefore be considered in potential LS patients.</p

    Variation in the risk of colorectal cancer in families with Lynch syndrome : a retrospective cohort study

    No full text
    Background: Existing clinical practice guidelines for carriers of pathogenic variants of DNA mismatch repair genes (Lynch syndrome) are based on the mean age-specific cumulative risk (penetrance) of colorectal cancer for all carriers of pathogenic variants in the same gene. We aimed to estimate the variation in the penetrance of colorectal cancer between carriers of pathogenic variants in the same gene by sex and continent of residence. Methods: In this retrospective cohort study, we sourced data from the International Mismatch Repair Consortium, which comprises 273 members from 122 research centres or clinics in 32 countries from six continents who are involved in Lynch syndrome research. Families with at least three members and at least one confirmed carrier of a pathogenic or likely pathogenic variant in a DNA mismatch repair gene (MLH1, MSH2, MSH6, or PMS2) were included. The families of probands with known de-novo pathogenic variants were excluded. Data were collected on the method of ascertainment of the family, sex, carrier status, cancer diagnoses, and ages at the time of pedigree collection and at last contact or death. We used a segregation analysis conditioned on ascertainment to estimate the mean penetrance of colorectal cancer and modelled unmeasured polygenic factors to estimate the variation in penetrance. The existence of unknown familial risk factors modifying colorectal cancer risk for Lynch syndrome carriers was tested by use of a Wald p value for the null hypothesis that the polygenic SD is zero. Findings: 5585 families with Lynch syndrome from 22 countries were eligible for the analysis. Of these, there were insufficient numbers to estimate penetrance for Asia and South America, and for those with EPCAM variants. Therefore, we used data (collected between July 11, 2014, and Dec 31, 2018) from 5255 families (1829 MLH1, 2179 MSH2, 798 MSH6, and 449 PMS2), comprising 79 809 relatives, recruited in 15 countries in North America, Europe, and Australasia. There was strong evidence of the existence of unknown familial risk factors modifying colorectal cancer risk for Lynch syndrome carriers (pT variant. The variation was especially prominent for MLH1 and MSH2 variant carriers, depending on gene, sex and continent, with 7–56% of carriers having a colorectal cancer penetrance of less than 20%, 9–44% having a penetrance of more than 80%, and only 10–19% having a penetrance of 40–60%. Interpretation: Our study findings highlight the important role of risk modifiers, which could lead to personalised risk assessments for precision prevention and early detection of colorectal cancer for people with Lynch syndrome
    corecore