45 research outputs found

    Variability of young stars: Determination of rotational periods of weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region

    Full text link
    We report on observation and determination of rotational periods of ten weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region. Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at University Observatory Jena between 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri stars.Comment: 11 pages, 26 figures, accepted to be published in A

    Observations of the transiting planet TrES-2 with the AIU Jena telescope in Großschwabhausen

    Get PDF
    We have started high precision photometric monitoring observations at the AIU Jena observatory in Großschwabhausen near Jena in fall 2006. We used a 25.4cm Cassegrain telescope equipped with a CCD-camera mounted piggyback on a 90cm telescope. To test the attainable photometric precision, we observed stars with known transiting planets. We could recover all planetary transits observed by us. We observed the parent star of the transiting planet TrES-2 over a longer period in Großschwabhausen. Between March and November 2007 seven different transits and almost a complete orbital period were analyzed. Overall, in 31 nights of observation 3423 exposures (in total 57.05h of observation) of the TrES-2 parent star were taken. Here, we present our methods and the resulting light curves. Using our observations we could improve the orbital parameters of the syste

    The tidal deformation and atmosphere of WASP-12b from its phase curve

    Full text link
    Ultra-hot Jupiters present a unique opportunity to understand the physics and chemistry of planets at extreme conditions. WASP-12b stands out as an archetype of this class of exoplanets. We performed comprehensive analyses of the transits, occultations, and phase curves of WASP-12b by combining new CHEOPS observations with previous TESS and Spitzer data to measure the planet's tidal deformation, atmospheric properties, and orbital decay rate. The planet was modeled as a triaxial ellipsoid parameterized by the second-order fluid Love number, h2h_2, which quantifies its radial deformation and provides insight into the interior structure. We measured the tidal deformation of WASP-12b and estimated a Love number of h2=1.550.49+0.45h_2=1.55_{-0.49}^{+0.45} (at 3.2σ\sigma) from its phase curve. We measured occultation depths of 333±24333\pm24ppm and 493±29493\pm29ppm in the CHEOPS and TESS bands, respectively, while the dayside emission spectrum indicates that CHEOPS and TESS probe similar pressure levels in the atmosphere at a temperature of 2900K. We also estimated low geometric albedos of 0.086±0.0170.086\pm0.017 and 0.01±0.0230.01\pm0.023 in the CHEOPS and TESS passbands, respectively, suggesting the absence of reflective clouds in the dayside of the WASP-12b. The CHEOPS occultations do not show strong evidence for variability in the dayside atmosphere of the planet. Finally, we refine the orbital decay rate by 12% to a value of -30.23±\pm0.82 ms/yr. WASP-12b becomes the second exoplanet, after WASP-103b, for which the Love number has been measured (at 3sigmasigma) from the effect of tidal deformation in the light curve. However, constraining the core mass fraction of the planet requires measuring h2h_2 with a higher precision. This can be achieved with high signal-to-noise observations with JWST since the phase curve amplitude, and consequently the induced tidal deformation effect, is higher in the infrared.Comment: accepted for publication in A&

    Constraining the reflective properties of WASP-178b using Cheops photometry

    Full text link
    Multiwavelength photometry of the secondary eclipses of extrasolar planets is able to disentangle the reflected and thermally emitted light radiated from the planetary dayside. This leads to the measurement of the planetary geometric albedo AgA_g, which is an indicator of the presence of clouds in the atmosphere, and the recirculation efficiency ϵ\epsilon, which quantifies the energy transport within the atmosphere. In this work we aim to measure AgA_g and ϵ\epsilon for the planet WASP-178 b, a highly irradiated giant planet with an estimated equilibrium temperature of 2450 K.} We analyzed archival spectra and the light curves collected by Cheops and Tess to characterize the host WASP-178, refine the ephemeris of the system and measure the eclipse depth in the passbands of the two respective telescopes. We measured a marginally significant eclipse depth of 70±\pm40 ppm in the Tess passband and statistically significant depth of 70±\pm20 ppm in the Cheops passband. Combining the eclipse depth measurement in the Cheops (lambda_eff=6300 AA) and Tess (lambda_eff=8000 AA) passbands we constrained the dayside brightness temperature of WASP-178 b in the 2250-2800 K interval. The geometric albedo 0.1<Ag\rm A_g<0.35 is in general agreement with the picture of poorly reflective giant planets, while the recirculation efficiency ϵ>\epsilon>0.7 makes WASP-178 b an interesting laboratory to test the current heat recirculation models.Comment: Accepted by Astronomy and Astrophysics on 31/08/202

    Detailed cool star flare morphology with CHEOPS and TESS

    Full text link
    Context. White-light stellar flares are proxies for some of the most energetic types of flares, but their triggering mechanism is still poorly understood. As they are associated with strong X and UV emission, their study is particularly relevant to estimate the amount of high-energy irradiation onto the atmospheres of exoplanets, especially those in their stars' habitable zone. Aims. We used the high-cadence, high-photometric capabilities of the CHEOPS and TESS space telescopes to study the detailed morphology of white-light flares occurring in a sample of 130 late-K and M stars, and compared our findings with results obtained at a lower cadence. We developed dedicated software for this purpose. Results. Multi-peak flares represent a significant percentage (30\gtrsim 30\%) of the detected outburst events. Our findings suggest that high-impulse flares are more frequent than suspected from lower-cadence data, so that the most impactful flux levels that hit close-in exoplanets might be more time-limited than expected. We found significant differences in the duration distributions of single-peak and complex flare components, but not in their peak luminosity. A statistical analysis of the flare parameter distributions provides marginal support for their description with a log-normal instead of a power-law function, leaving the door open to several flare formation scenarios. We tentatively confirmed previous results about quasi-periodic pulsations in high-cadence photometry, report the possible detection of a pre-flare dip, and did not find hints of photometric variability due to an undetected flare background. Conclusions. The high-cadence study of stellar hosts might be crucial to evaluate the impact of their flares on close-in exoplanets, as their impulsive phase emission might otherwise be incorrectly estimated. Future telescopes such as PLATO and Ariel will help in this respect.Comment: 28 pages, 25 figures, 4 tables, to be published in Astronomy & Astrophysic

    Characterising TOI-732 b and c: New insights into the M-dwarf radius and density valley

    Full text link
    TOI-732 is an M dwarf hosting two transiting planets that are located on the two opposite sides of the radius valley. By doubling the number of available space-based observations and increasing the number of radial velocity (RV) measurements, we aim at refining the parameters of TOI-732 b and c. We also use the results to study the slope of the radius valley and the density valley for a well-characterised sample of M-dwarf exoplanets. We performed a global MCMC analysis by jointly modelling ground-based light curves and CHEOPS and TESS observations, along with RV time series both taken from the literature and obtained with the MAROON-X spectrograph. The slopes of the M-dwarf valleys were quantified via a Support Vector Machine (SVM) procedure. TOI-732 b is an ultrashort-period planet (P0.77P\sim0.77 d) with a radius Rb=1.3250.058+0.057R_b=1.325_{-0.058}^{+0.057} RR_{\oplus} and a mass Mb=2.46±0.19M_b=2.46\pm0.19 MM_{\oplus} (mean density ρb=5.80.8+1.0\rho_b=5.8_{-0.8}^{+1.0} g cm3^{-3}), while the outer planet at P12.25P\sim12.25 d has Rc=2.390.11+0.10R_c=2.39_{-0.11}^{+0.10} RR_{\oplus}, Mc=8.040.48+0.50M_c=8.04_{-0.48}^{+0.50} MM_{\oplus}, and thus ρc=3.240.43+0.55\rho_c=3.24_{-0.43}^{+0.55} g cm3^{-3}. Also taking into account our interior structure calculations, TOI-732 b is a super-Earth and TOI-732 c is a mini-Neptune. Following the SVM approach, we quantified dlogRp,valley/dlogP=0.0650.013+0.024\mathrm{d}\log{R_{p,{\mathrm{valley}}}}/\mathrm{d}\log{P}=-0.065_{-0.013}^{+0.024}, which is flatter than for Sun-like stars. In line with former analyses, we note that the radius valley for M-dwarf planets is more densely populated, and we further quantify the slope of the density valley as dlogρ^valley/dlogP=0.020.04+0.12\mathrm{d}\log{\hat{\rho}_{\mathrm{valley}}}/\mathrm{d}\log{P}=-0.02_{-0.04}^{+0.12}. Compared to FGK stars, the weaker dependence of the position of the radius valley on the orbital period might indicate that the formation shapes the radius valley around M dwarfs more strongly than the evolution mechanisms.Comment: 28 pages (17 in the main text), 18 figures (9 in the main text), 11 tables (7 in the main text). Accepted for publication in A&

    CHEOPS observations of KELT-20 b/MASCARA-2 b: An aligned orbit and signs of variability from a reflective dayside

    Full text link
    Occultations are windows of opportunity to indirectly peek into the dayside atmosphere of exoplanets. High-precision transit events provide information on the spin-orbit alignment of exoplanets around fast-rotating hosts. We aim to precisely measure the planetary radius and geometric albedo of the ultra-hot Jupiter (UHJ) KELT-20 b as well as the system's spin-orbit alignment. We obtained optical high-precision transits and occultations of KELT-20 b using CHEOPS observations in conjunction with the simultaneous TESS observations. We interpreted the occultation measurements together with archival infrared observations to measure the planetary geometric albedo and dayside temperatures. We further used the host star's gravity-darkened nature to measure the system's obliquity. We present a time-averaged precise occultation depth of 82(6) ppm measured with seven CHEOPS visits and 131(+8/-7) ppm from the analysis of all available TESS photometry. Using these measurements, we precisely constrain the geometric albedo of KELT-20 b to 0.26(0.04) and the brightness temperature of the dayside hemisphere to 2566(+77/-80) K. Assuming Lambertian scattering law, we constrain the Bond albedo to 0.36(+0.04/-0.05) along with a minimal heat transfer to the night side. Furthermore, using five transit observations we provide stricter constraints of 3.9(1.1) degrees on the sky-projected obliquity of the system. The aligned orbit of KELT-20 b is in contrast to previous CHEOPS studies that have found strongly inclined orbits for planets orbiting other A-type stars. The comparably high planetary geometric albedo of KELT-20 b corroborates a known trend of strongly irradiated planets being more reflective. Finally, we tentatively detect signs of temporal variability in the occultation depths, which might indicate variable cloud cover advecting onto the planetary day side.Comment: 27 pages, 15 figures, Accepted for publication in Astronomy & Astrophysic

    The EBLM Project XI. Mass, radius and effective temperature measurements for 23 M-dwarf companions to solar-type stars observed with CHEOPS

    Get PDF
    Observations of low-mass stars have frequently shown a disagreement between observed stellar radii and radii predicted by theoretical stellar structure models. This ``radius inflation'' problem could have an impact on both stellar and exoplanetary science. We present the final results of our observation programme with the CHEOPS satellite to obtain high-precision light curves of eclipsing binaries with low mass stellar companions (EBLMs). Combined with the spectroscopic orbits of the solar-type companion, we can derive the masses, radii and effective temperatures of 23 M-dwarf stars. We use the PYCHEOPS data analysis software to analyse their primary and secondary occultations. For all but one target, we also perform analyses with TESS light curves for comparison. We have assessed the impact of starspot-induced variation on our derived parameters and account for this in our radius and effective temperature uncertainties using simulated light curves. We observe trends for inflation with both metallicity and orbital separation. We also observe a strong trend in the difference between theoretical and observational effective temperatures with metallicity. There is no such trend with orbital separation. These results are not consistent with the idea that observed inflation in stellar radius combines with lower effective temperature to preserve the luminosity predicted by low-mass stellar models. Our EBLM systems are high-quality and homogeneous measurements that can be used in further studies into radius inflation

    A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067

    Full text link
    Planets with radii between that of the Earth and Neptune (hereafter referred to as sub-Neptunes) are found in close-in orbits around more than half of all Sun-like stars. Yet, their composition, formation, and evolution remain poorly understood. The study of multi-planetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here, we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94 to 2.85 Re. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.Comment: Published in Nature on November 30, 2023. Supplementary Information can be found in the online version of the paper in the journa
    corecore