323 research outputs found
Anthropic solution to the magnetic muon anomaly: the charged see-saw
We present models of new physics that can explain the muon g-2 anomaly in
accord with with the assumption that the only scalar existing at the weak scale
is the Higgs, as suggested by anthropic selection. Such models are dubbed
"charged see-saw" because the muon mass term is mediated by heavy leptons. The
electroweak contribution to the g-2 gets modified by order one factors, giving
an anomaly of the same order as the observed hint, which is strongly correlated
with a modification of the Higgs coupling to the muon.Comment: 21 pages, many equations despite the first word in the title. v3:
loop function G_WN corrected, conclusions unchange
How Cross‐Examination on Subjectivity and Bias Affects Jurors’ Evaluations of Forensic Science Evidence
Contextual bias has been widely discussed as a possible problem in forensic science. The trial simulation experiment reported here examined reactions of jurors at a county courthouse to cross‐examination and arguments about contextual bias in a hypothetical case. We varied whether the key prosecution witness (a forensic odontologist) was cross‐examined about the subjectivity of his interpretations and about his exposure to potentially biasing task‐irrelevant information. Jurors found the expert less credible and were less likely to convict when the expert admitted that his interpretation rested on subjective judgment, and when he admitted having been exposed to potentially biasing task‐irrelevant contextual information (relative to when these issues were not raised by the lawyers). The findings suggest, however, that forensic scientists can immunize themselves against such challenges and maximize the weight jurors give their evidence by adopting context management procedures that blind them to task‐irrelevant information
Charged-Lepton Flavour Physics
This writeup of a talk at the 2011 Lepton-Photon symposium in Mumbai, India,
summarises recent results in the charged-lepton flavour sector. I review
searches for charged-lepton flavour violation, lepton electric dipole moments
and flavour-conserving CP violation. I also discuss recent progress in
tau-lepton physics and in the Standard Model prediction of the muon anomalous
magnetic moment.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 23 pages, 14 figure
The deuteron: structure and form factors
A brief review of the history of the discovery of the deuteron in provided.
The current status of both experiment and theory for the elastic electron
scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic
A Yersinia Effector with Enhanced Inhibitory Activity on the NF-κB Pathway Activates the NLRP3/ASC/Caspase-1 Inflammasome in Macrophages
A type III secretion system (T3SS) in pathogenic Yersinia
species functions to translocate Yop effectors, which modulate cytokine
production and regulate cell death in macrophages. Distinct pathways of
T3SS-dependent cell death and caspase-1 activation occur in
Yersinia-infected macrophages. One pathway of cell death
and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an
acetyltransferase that inactivates MAPK kinases and IKKβ to cause
TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y.
pestis KIM (YopJKIM) has two amino acid substitutions,
F177L and K206E, not present in YopJ proteins of Y.
pseudotuberculosis and Y. pestis CO92. As compared
to other YopJ isoforms, YopJKIM causes increased apoptosis, caspase-1
activation, and secretion of IL-1β in Yersinia-infected
macrophages. The molecular basis for increased apoptosis and activation of
caspase-1 by YopJKIM in Yersinia-infected
macrophages was studied. Site directed mutagenesis showed that the F177L and
K206E substitutions in YopJKIM were important for enhanced apoptosis,
caspase-1 activation, and IL-1β secretion. As compared to
YopJCO92, YopJKIM displayed an enhanced capacity to
inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in
vitro. YopJKIM also showed a moderately increased ability to inhibit
phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion
occurred in IKKβ-deficient macrophages infected with Y.
pestis expressing YopJCO92, confirming that the
NF-κB pathway can negatively regulate inflammasome activation.
K+ efflux, NLRP3 and ASC were important for secretion of
IL-1β in response to Y. pestis KIM infection as shown using
macrophages lacking inflammasome components or by the addition of exogenous KCl.
These data show that caspase-1 is activated in naïve macrophages in
response to infection with a pathogen that inhibits IKKβ and MAPK kinases
and induces TLR4-dependent apoptosis. This pro-inflammatory form of apoptosis
may represent an early innate immune response to highly virulent pathogens such
as Y. pestis KIM that have evolved an enhanced ability to
inhibit host signaling pathways
Instrumented fusion of thoracolumbar fracture with type I mineralized collagen matrix combined with autogenous bone marrow as a bone graft substitute: a four-case report
In order to avoid the morbidity from autogenous bone harvesting, bone graft substitutes are being used more frequently in spinal surgery. There is indirect radiological evidence that bone graft substitutes are efficacious in humans. The purpose of this four-case study was to visually, manually, and histologically assess the quality of a fusion mass produced by a collagen hydroxyapatite scaffold impregnated with autologous bone marrow aspirate for posterolateral fusion. Four patients sustained an acute thoracolumbar fracture and were treated by short posterior segment fusion using the AO fixateur interne. Autologous bone marrow (iliac crest) impregnated hydroxyapatite-collagen scaffold was laid on the decorticated posterior elements. Routine implant removal was performed after a mean of 15.3 months (12–20). During this second surgery, fusion mass was assessed visually and manually. A bone biopsy was sent for histological analysis of all four cases. Fusion was confirmed in all four patients intraoperatively and sagittal stress testing confirmed mechanical adequacy of the fusion mass. Three out of the four (cases 2–4) had their implants removed between 12 and 15 months after the index surgery. All their histological cuts showed evidence of newly formed bone and presence of active membranous and/or enchondral ossification foci. The last patient (case 1) underwent implant removal at 20 months and his histological cuts showed mature bone, but no active ossification foci. This four-case report suggests that the fusion mass produced by a mineralized collagen matrix graft soaked in aspirated bone marrow is histologically and mechanically adequate in a thoracolumbar fracture model. A larger patient series and/or randomized controlled studies are warranted to confirm these initial results
Heterochromatic Genome Stability Requires Regulators of Histone H3 K9 Methylation
Heterochromatin contains many repetitive DNA elements and few protein-encoding genes, yet it is essential for chromosome organization and inheritance. Here, we show that Drosophila that lack the Su(var)3-9 H3K9 methyltransferase display significantly elevated frequencies of spontaneous DNA damage in heterochromatin, in both somatic and germ-line cells. Accumulated DNA damage in these mutants correlates with chromosomal defects, such as translocations and loss of heterozygosity. DNA repair and mitotic checkpoints are also activated in mutant animals and are required for their viability. Similar effects of lower magnitude were observed in animals that lack the RNA interference pathway component Dcr2. These results suggest that the H3K9 methylation and RNAi pathways ensure heterochromatin stability
FcRn-mediated antibody transport across epithelial cells revealed by electron tomography
The neonatal Fc receptor (FcRn) transports maternal IgG across epithelial barriers, thereby providing the fetus or newborn with humoral immunity before its immune system is fully functional. In newborn rats, FcRn transfers IgG from milk to blood by apical-to-basolateral transcytosis across intestinal epithelial cells. The pH difference between the apical (pH 6.0–6.5) and basolateral (pH 7.4) sides of intestinal epithelial cells facilitates the efficient
unidirectional transport of IgG, because FcRn binds IgG at
pH 6.0–6.5 but not at pH 7 or more. As milk passes through
the neonatal intestine, maternal IgG is removed by FcRn-expressing cells in the proximal small intestine (duodenum and jejunum); remaining proteins are absorbed and degraded by FcRn-negative cells in the distal small intestine (ileum). Here we use electron tomography to make jejunal transcytosis visible directly in space and time, developing new labelling and detection methods to map individual nanogold-labelled Fc within transport
vesicles and simultaneously to characterize these vesicles by immunolabelling. Combining electron tomography with a nonperturbing endocytic label allowed us to conclusively identify receptor-bound ligands, resolve interconnecting vesicles, determine whether a vesicle was microtubule-associated, and accurately trace FcRn-mediated transport of IgG. Our results present a complex picture in which Fc moves through networks of entangled tubular and irregular vesicles, only some of which are microtubule-associated, as it migrates to the basolateral surface. New features
of transcytosis are elucidated, including transport involving multivesicular body inner vesicles/tubules and exocytosis through clathrin-coated pits. Markers for early, late and recycling endosomes each labelled vesicles in different and overlapping morphological classes, revealing spatial complexity in endo-lysosomal trafficking
YopJ-Induced Caspase-1 Activation in Yersinia-Infected Macrophages: Independent of Apoptosis, Linked to Necrosis, Dispensable for Innate Host Defense
Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJKIM) strains have high cytotoxic activity. In addition, YopJKIM-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJKIM-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJKIM-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJKIM. Wild-type and congenic caspase 1 knockout C57BL/6 mice were equally susceptible to lethal infection with Y. pseudotuberculosis ectopically expressing YopP. These data suggest that YopJ-induced caspase-1 activation in Yersinia-infected macrophages is a downstream consequence of necrotic cell death and is dispensable for innate host resistance to a strain with enhanced cytotoxicity
Identification of Nedd4 E3 Ubiquitin Ligase as a Binding Partner and Regulator of MAK-V Protein Kinase
MAK-V/Hunk is a scantily characterized AMPK-like protein kinase. Recent findings identified MAK-V as a pro-survival and anti-apoptotic protein and revealed its role in embryonic development as well as in tumorigenesis and metastasis. However molecular mechanisms of MAK-V action and regulation of its activity remain largely unknown. We identified Nedd4 as an interaction partner for MAK-V protein kinase. However, this HECT-type E3 ubiquitin ligase is not involved in the control of MAK-V degradation by the ubiquitin-proteasome system that regulates MAK-V abundance in cells. However, Nedd4 in an ubiquitin ligase-independent manner rescued developmental defects in Xenopus embryos induced by MAK-V overexpression, suggesting physiological relevance of interaction between MAK-V and Nedd4. This identifies Nedd4 as the first known regulator of MAK-V function
- …