10 research outputs found

    B cell depletion in autoimmune diabetes:insights from murine models

    Get PDF
    INTRODUCTION: The incidence of type 1 diabetes (T1D) is rising for reasons that largely elude us. New strategies aimed at halting the disease process are needed. One type of immune cell thought to contribute to T1D is the B lymphocyte. The first Phase II trial of B cell depletion in new onset T1D patients indicated that this slowed the destruction of insulin-producing pancreatic beta cells. The mechanistic basis of the beneficial effects remains unclear. AREAS COVERED: Studies of B cell depletion and deficiency in animal models of T1D. How B cells can influence T cell-dependent autoimmune diabetes in animal models. The heterogeneity of B cell populations and current evidence for the potential contribution of specific B cell subsets to diabetes, with emphasis on marginal zone B cells and B1 B cells. EXPERT OPINION: B cells can influence the T cell response to islet antigens and B cell depletion or genetic deficiency is associated with decreased insulitis in animal models. New evidence suggests that B1 cells may contribute to diabetes pathogenesis. A better understanding of the roles of individual B cell subsets in disease will permit fine-tuning of therapeutic strategies to modify these populations

    Increased Autoimmune Diabetes in pIgR-Deficient NOD Mice Is Due to a "Hitchhiking" Interval that Refines the Genetic Effect of Idd5.4

    Get PDF
    Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces "hitchhiking" (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large "hitchhiking" genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of "hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci

    Protein tyrosine phosphatases: molecular switches in metabolism and diabetes.

    No full text
    Protein tyrosine phosphatases (PTPs) are a large family of enzymes that generally oppose the actions of protein tyrosine kinases (PTKs). Genetic polymorphisms for particular PTPs are associated with altered risk of both type 1 diabetes (T1D) and type 2 diabetes (T2D). Moreover, recent evidence suggests that PTPs play crucial roles in metabolism. They can act as regulators of liver homeostasis, food intake, or immune-mediated pancreatic b cell death. In this review we describe the mechanisms by which different members of the non-receptor PTP (PTPN) family influence metabolic physiology. This 'metabolic job' of PTPs is discussed in depth and the role of these proteins in different cell types compared. Understanding the pathways regulated by PTPs will provide novel therapeutic strategies for the treatment of diabetes.info:eu-repo/semantics/publishe

    Congenic mice reveal genetic epistasis and overlapping disease loci for autoimmune diabetes and listeriosis

    Get PDF
    The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease

    Granzyme B Is Dispensable in the Development of Diabetes in Non-Obese Diabetic Mice

    Get PDF
    Pancreatic beta cell destruction in type 1 diabetes is mediated by cytotoxic CD8(+) T lymphoctyes (CTL). Granzyme B is an effector molecule used by CTL to kill target cells. We previously showed that granzyme B-deficient allogeneic CTL inefficiently killed pancreatic islets in vitro. We generated granzyme B-deficient non-obese diabetic (NOD) mice to test whether granzyme B is an important effector molecule in spontaneous type 1 diabetes. Granzyme B-deficient islet antigen-specific CD8(+) T cells had impaired homing into islets of young mice. Insulitis was reduced in granzyme B-deficient mice at 70 days of age (insulitis score 0.043Β±0.019 in granzyme B-deficient versus 0.139Β±0.034 in wild-type NOD mice p<0.05), but was similar to wild-type at 100 and 150 days of age. We observed a reduced frequency of CD3(+)CD8(+) T cells in the islets and peripheral lymphoid tissues of granzyme B-deficient mice (p<0.005 and p<0.0001 respectively), but there was no difference in cell proportions in the thymus. Antigen-specific CTL developed normally in granzyme B-deficient mice, and were able to kill NOD islet target cells as efficiently as wild-type CTL in vitro. The incidence of spontaneous diabetes in granzyme B-deficient mice was the same as wild-type NOD mice. We observed a delayed onset of diabetes in granzyme B-deficient CD8-dependent NOD8.3 mice (median onset 102.5 days in granzyme B-deficient versus 57.50 days in wild-type NOD8.3 mice), which may be due to the delayed onset of insulitis or inefficient priming at an earlier age in this accelerated model of diabetes. Our data indicate that granzyme B is dispensable for beta cell destruction in type 1 diabetes, but is required for efficient early activation of CTL

    Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes

    Get PDF
    A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying "natural" alleles in the human population is to engineer "artificial" alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis
    corecore