62 research outputs found

    Learning Weak Constraints in Answer Set Programming

    Get PDF
    This paper contributes to the area of inductive logic programming by presenting a new learning framework that allows the learning of weak constraints in Answer Set Programming (ASP). The framework, called Learning from Ordered Answer Sets, generalises our previous work on learning ASP programs without weak constraints, by considering a new notion of examples as ordered pairs of partial answer sets that exemplify which answer sets of a learned hypothesis (together with a given background knowledge) are preferred to others. In this new learning task inductive solutions are searched within a hypothesis space of normal rules, choice rules, and hard and weak constraints. We propose a new algorithm, ILASP2, which is sound and complete with respect to our new learning framework. We investigate its applicability to learning preferences in an interview scheduling problem and also demonstrate that when restricted to the task of learning ASP programs without weak constraints, ILASP2 can be much more efficient than our previously proposed system.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Predicate Invention in Inductive Logic Programming

    Get PDF
    The ability to recognise new concepts and incorporate them into our knowledge is an essential part of learning. From new scientific concepts to the words that are used in everyday conversation, they all must have at some point in the past, been invented and their definition defined. In this position paper, we discuss how a general framework for predicate invention could be made, by reasoning about the problem at the meta-level using an appropriate notion of top theory in inductive logic programming

    Multi-agent Confidential Abductive Reasoning

    Get PDF
    In the context of multi-agent hypothetical reasoning, agents typically have partial knowledge about their environments, and the union of such knowledge is still incomplete to represent the whole world. Thus, given a global query they collaborate with each other to make correct inferences and hypothesis, whilst maintaining global constraints. Most collaborative reasoning systems operate on the assumption that agents can share or communicate any information they have. However, in application domains like multi-agent systems for healthcare or distributed software agents for security policies in coalition networks, confidentiality of knowledge is an additional primary concern. These agents are required to collaborately compute consistent answers for a query whilst preserving their own private information. This paper addresses this issue showing how this dichotomy between "open communication" in collaborative reasoning and protection of confidentiality can be accommodated. We present a general-purpose distributed abductive logic programming system for multi-agent hypothetical reasoning with confidentiality. Specifically, the system computes consistent conditional answers for a query over a set of distributed normal logic programs with possibly unbound domains and arithmetic constraints, preserving the private information within the logic programs. A case study on security policy analysis in distributed coalition networks is described, as an example of many applications of this system

    Designing Effective Policies for Minimal Agents

    Get PDF
    A policy for a minimal reactive agent is a set of condition-action rules used to determine its response to perceived environmental stimuli. When the policy pre-disposes the agent to achieving a stipulated goal we call it a teleo-reactive policy. This paper presents a framework for constructing and evaluating teleo-reactive policies for one or more minimal agents, based upon discounted-reward evaluation of policy-restricted subgraphs of complete situation graphs. The main feature of the method is that it exploits explicit associations of the agent's perceptions with states. The framework allows to construct and evaluate policies for a number of cooperating agents by focusing upon the behaviour of a single representative of them. This abstraction ameliorates the potential combinatorial burden. Within the framework varied behaviours can be modelled, including communication between agents. Simulation results presented here indicate that the method affords a good degree of predictive power. The paper presents two different branch and bound algorithms used to optimize policy evaluation
    • …
    corecore