
Designing Effective Policies

for Minimal Agents

KRYSIA BRODA1,* AND CHRISTOPHER J. HOGGER1

1Department of Computing, Imperial College London South Kensington Campus, London SW7 2AZ, UK

*Corresponding author: kb@doc.ic.ac.uk

A policy for a minimal reactive agent is a set of condition-action rules used to determine its response

to perceived environmental stimuli. When the policy pre-disposes the agent to achieving a stipulated

goal we call it a teleo-reactive policy. This paper presents a framework for constructing and eval-

uating teleo-reactive policies for one or more minimal agents, based upon discounted-reward evalu-

ation of policy-restricted subgraphs of complete situation graphs. The main feature of the method is

that it exploits explicit associations of the agent’s perceptions with states. The framework allows to

construct and evaluate policies for a number of cooperating agents by focusing upon the behaviour

of a single representative of them. This abstraction ameliorates the potential combinatorial burden.

Within the framework varied behaviours can be modelled, including communication between

agents. Simulation results presented here indicate that the method affords a good degree of predic-

tive power. The paper presents two different branch and bound algorithms used to optimize policy

evaluation.

Keywords: minimal agent; multi-agent policies; policy evaluation

Received 22 January 2008; revised 26 September 2008

1. INTRODUCTION

This paper presents a framework for constructing and evaluat-

ing goal-oriented policies for particularly simple autonomous

agents. It concentrates mostly upon purely reactive ones but

also examines some conservative extensions to these, for

instance the incorporation of hysteretic features. In the

context of ambient intelligence, our work can be regarded as

concentrating upon the implementation of environmentally

embedded responsive agents that have been optimized for per-

formance, having been selected by the optimization process

from a multitude of candidates, each representing some

percept–response relation consistent with some logical

model of interaction between users and their environment.

As an illustration, a personalized device intended for monitor-

ing a user’s diabetes would need to reflect some suitable

logical theory describing the interplay between perceived

glucose levels (or dynamics) and controlled responses of

insulin delivery. Although such a theory might be embedded

directly in the device as a rational or cognitive agent, it

might admit as its consequences numerous alternative

percept–response relations of varying efficacy. By contrast,

our aim is to analyse such relations in advance to predict the

most efficacious one, and then embed that as a compiled end-

product into the device as a single reactive agent.

In this section we motivate our work and give an overview

of the framework and of the paper. The technical presentation

is deferred until Section 2.

1.1. Motivation

Our focus on very simple agents is motivated chiefly by emer-

ging application contexts, such as remote exploration, where

physical and economic constraints exclude sophisticated

on-board processing. Besides their direct application to phys-

ical domains, however, these agents may also be used more

generally as building-blocks in the design of algorithms per-

forming state-transitions upon data structures, for example in

sorting, searching or tiling problems.

Every agent we consider contains some policy which

governs its behaviour and is intended to enable the agent to

achieve some goal known to the designer of the policy. Our

standard policy structure will be a set of mutually exclusive

production rules of the form perception! action, usually

intended to control durative behaviour: given some current

perception the agent performs the corresponding action until

acquiring a new perception, whereupon it reacts likewise to

that. A goal for such an agent is typically some specified

state(s) of the world together with some associated specified

perception(s) for the agent.

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on October 29, 2008 doi:10.1093/comjnl/bxn052

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

We use the term teleo-reactive (TR) policy to signify a

policy that has been designed with some particular goal in

mind and, correspondingly, the term TR-agent to signify an

agent governed by such a policy. The latter term was first

introduced in [1] and further developed in [2, 3], but with a

more specific meaning.

The characteristics of a TR-agent are, typically, that it

behaves autonomously under the control of the policy stored

within it, that the policy alone instructs it how to react to per-

ceptions of the world, that it possesses very limited computing

resources for program storage and interpretation and that it is

predisposed by the policy to achieve some goal. Such an agent

may or may not have sufficient perceptive capability to know,

at any instant, the entire state of the world. An agent of the

kind described in [3] is presumed at least capable of perceiving

an intended goal state whenever that state arises, and is

accordingly designed with that capability in mind. Its policy

includes an explicit test for the goal state, whilst the nature

and ordering of its rules are inferred by reductive analysis of

that test. Its goal-orientedness is thus explicit in the policy.

By contrast, we make two key assumptions about the kind

of TR-agents studied in this paper, and first introduced in

[4]; namely that they have (i) little or no access to cognitive

resources, such as beliefs or reasoning systems, and (ii) only

partial observational capability, in that their perceptions may

not fully capture the whole world state, whether a goal state

or otherwise. The design process now relies not upon goal-

reductive analysis but upon comparing the extents to which

alternative policies dispose the agent towards achieving a

goal—as judged, for instance, by a discounted-reward

principle. A policy identified on this basis is implicitly goal

oriented.

Informally, a good policy is the one which disposes an agent

to perform well in pursuit of a defined goal whatever state it is

currently in. TR-agents therefore occupy a middle ground

between wholly reactive agents [5] whose actions have no

overall motivation, and wholly deliberative agents [6] whose

actions—including on-the-fly planning—flow from an explicit

stored goal. A significant advantage is the relatively low

resources a TR-agent needs for its internal logic, which con-

sists of little more than a fixed rule-set requiring minimal hard-

ware for its execution. Unlike a deliberative agent, it does not

need on-board computational facilities capable of executing

arbitrarily complicated software. Nevertheless, provided that

the rule-set has been constructed with appropriate regard to

the desired goal, the agent is likely to achieve it.

The kind of agents we are considering are potentially suit-

able for many contexts requiring low-cost determination of

responses to sensory inputs. One rapidly developing such

context is that of wireless sensor networks (WSNs) as

described in [7, 8]. There, agents are implemented as programs

distributed across networks of embedded miniature sensing

devices capable of communicating wirelessly. In [8] such

agents are exemplified for intruder detection, whilst the

Agilla framework of [7] shows their application to fire

detection, cargo monitoring and robot navigation.

Agilla’s agent programs, like our policies, do not deliberate

with explicitly represented goals but nonetheless effectively

compute percept–response relations sufficient to achieve the

overall goal of the WSN. They inter-communicate by read–

write operations on tuple spaces local to their own host

devices or those of their neighbours, a mechanism which our

own agents would implement by the kind of extended percep-

tion discussed in Section 5. Their migrations between devices

can include transporting details of their internal state such as

the current value of their instruction counter; our own agents

can, analogously, internally record their current perception

using the kind of memory extension discussed in Section 6.

A comparison of our framework with other approaches to

agent design is given in Section 7. In particular we discuss

the contrast with deliberative agent policies [9].

1.2. The problem

The problem we address in this paper is that of predicting

optimal functional policies for single and multi-agent environ-

ments in which a stochastic (teleo) reactive agent perceives (in

general) only partial information about any state. This

partial-observability (PO) restriction applies also (in general)

to any state that happens to be a goal for the agent. In our

context, stochastic behaviour means that when an agent

takes a particular action there can be alternative outcomes

associated with some probability distribution. By functional

behaviour we mean that an agent always takes the same

action in response to a given perception.

Many well-tried policy-prediction frameworks exist for

reactive agents but, as far as we can determine, none yet

exists that is guaranteed to deliver, for large problem contexts,

an optimal functional policy under the PO restriction. The

various algorithms used in the PO Markov decision process

(POMDP) framework, including the effective but computation-

ally demanding Witness Algorithm [10], yield policies which

are optimal but are not simple functions from perceptions toac-

tions. Instead, those policies are essentially decision trees in

which the action taken depends upon a history of prior actions.

By contrast, some other frameworks do yield policies that

are functional but are not necessarily optimal, though they

will often be near-optimal. An example of this is the sarsa

reinforcement learning algorithm [11]. These techniques

impose an MDP paradigm and ostensibly treat perceptions

as states in a conventional MDP but require full consideration

of the concrete state-space in order to estimate policy values.

Genetic algorithms are also applicable to the problem but,

again, without any guarantee of optimality.

The issue of scalability has to be confronted by all these fra-

meworks. Typical applications present relatively small sets of

possible percepts and actions but very large sets of possible

states, whilst the relation between states and what can be

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1185

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

perceived in them has no general pattern. This had led some

researchers to resort to methods of abstraction which reduce

the scale of the problem by collecting perceptions or states

(or both) into sets to form a smaller number of individual

abstract perceptions or abstract states to which the predictive

method can then be realistically applied [12].

Abstraction, however, necessarily discards some infor-

mation and may not necessarily deliver optimal policies.

Moreover, structural features of some abstraction methods

may render it impossible to find a good policy that is also func-

tional, instead requiring the agent to act differently in response

to the same perception of different abstract states.

The difficulties outlined above become seriously com-

pounded in the multi-agent context. None of the POMDP or

genetic algorithm frameworks extend easily to this context.

This paper explores the policy-prediction problem using a

fundamental representation of it that we call the situation

graph framework (SGF), presented formally in Section

2. Each node of an situation graph represents a situation in

the form (o, p), where the term p encodes an agent’s perception

and o encodes what we call the objective state, which excludes

the perception. What we call a situation is elsewhere in the

literature often called ‘state’, but in this paper we shall use

the term state always to refer to this o-component. The arcs

in the situation graph represent possible actions. This distinction

between o and p offers more details to work with than the

standard MDP formulation, in which perceptions are not

explicitly separated from their associated states. In the SGF

policy values are defined by a discounted-reward formula

and, for small-scale applications, a guaranteed optimal policy

can be computed using a standard equation-solving algorithm.

With a modest increase in scale the optimal policy can still

be computed using branch-and-bound techniques. However,

if the scale is increased radically then, as with all the other

frameworks, compromises must be made which forfeit the

guarantee of optimality though may still produce very good

policies.

For larger-scale contexts the SGF can employ situational

abstraction in a manner that preserves the functional character

of policies but renders them as functions from abstract

percepts to actions. We shall not describe this further in this

paper but instead refer the reader to detailed accounts of it

in [13, 14].

Our treatment of multi-agent contexts can also be viewed as

a form of abstraction. We expose the issues involved in this,

using a novel elaboration of the situation graph, so that it

continues to represent the transitions experienced by one

agent but now includes not only those that are self-effected

but also those effected by the exogenous actions of other

agents, which we call x-transitions. This elaboration is scal-

able to the extent that the complexity of the graph is neutral

with respect to the number of acting agents.

Besides the SGF itself, our main contributions are the follow-

ing: first, we dissect the issues involved when formulating and

evaluating policies in order to provide full perspective; second,

we present and compare two new algorithms, both employing

branch-and-bound techniques but in very different ways, for

determining optimal policies in medium-scale contexts and

third, for the cloned multi-agent case we show empirically

that predictions based on our notion of x-arcs compare well

with the values obtained by simulation.

1.3. Overview of the framework

We will now give a preliminary sketch of the framework. The

principal construct employed for any given application is a

primary graph, called the unrestricted graph, whose nodes

denote situations and whose action labelled arcs denote

transitions between them. In this model a situation combines

an objective state with a (usually partial) perception of

that state. Since policies are perception–action mappings, the

number of possible policies clearly depends upon the number

of possible perceptions. Moreover this dependence is generally

exponential because each perception may (usually) be mapped

to any of several possible actions. For instance, one of our

exemplifications later in the paper is a simple application that

involves just four blocks and three actions, yet potentially

offers hundreds of policies to consider. The inclusion of

objective state information in the nodes of the graph does not

influence this number, but does increase further the burden of

assessing policies. Each policy is some restricted subgraph of

the primary one, the restriction being that the arc(s) emergent

from a node shall be identically labelled by whatever action

the policy dictates for that node’s perception. Whilst the

policy’s perception–action mapping will be functional in all

the applications considered in this paper, a node typically has

several emergent arcs to different situations for the same

action, which we call a bundle, so that whilst an agent’s

policy is deterministic its behaviour need not be. In order to

evaluate a restricted graph we need therefore to assign a

probability distribution across each such bundle of arcs.

In addition rewards must be assigned to arcs. Without this

provision the evaluation could consider only how probable it

was that a goal situation would be reached (if at all), but not

how worthwhile it was to reach it in relation to the effort

expended by the agent in doing so. The restricted graph and

these assignments then form the entire basis for determining

the policy’s value, which is a quantitative measure calculated

using a discounted-reward principle. An optimal policy is the

one having greatest value among all policies.

The problem of designing optimal or near-optimal policies

for a group of one or more similar TR-agents, called clones,

operating in the context of exogenous events is also addressed

within our framework and was first introduced in [15]. From

the viewpoint of any individual agent an exogenous event is

any change in the world not caused through its own actions,

so includes actions of other agents according to their policy

as well as serendipitous actions caused by external agents.

1186 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

The multi-agent context poses further challenges of its own,

since the design process must take some account of the multi-

situations in which the agents find themselves and of the inter-

dependent effects of their actions. This extra complexity in

dealing with multiple agents makes it impractical to extend

our graphs to represent comprehensively all the combinatorial

possibilities arising if their nodes were generalized to denote

multi-situations. Instead, for these contexts we employ a con-

servative extension of a restricted graph, so that it represents

the behaviour of any one agent (termed self) together with

the possible effects upon it of the behaviour of any other

agent (termed other). Having only two notional entities—

self and other—represented in this extension is another contri-

bution towards the scalability of the design process. An

additional consequence of our approach is that it can be

used to model also the effects upon self’s possibilities of

events that arise exogenously rather than from other agents.

In this case other can be identified with whatever external

source is responsible for the exogeneity. Our use of such repre-

sentative entities, which we first investigated in [4], is some-

what similar in motivation to [16] in which the focus is

upon MDP-based design, and to [17] in which the focus is

upon design by reinforcement learning. We have so far

applied it only to cloned agents, that is, ones all having the

same policy. Whatever that policy is, just one restricted

graph is sufficient to represent it. For n agents having distinct

policies our method would require the consideration of only n

restricted graphs, one for each instance of self with its own

policy, having special arcs denoting the possible impacts of

any of the other agents. This conservative treatment of differ-

entiated agents is a further contribution to scalability.

We have also investigated the applicability of the frame-

work to limited but potentially useful extensions of the sup-

posed architectures of the agents, such as possession of

small amounts of internal memory (besides that employed

for storing policies) and communication. Several examples

in this paper examine cases where an agent may broadcast

some of what it perceives to all other agents, who then assim-

ilate this information into their own perceptions. They may

then cooperate to a greater degree than otherwise and so

perform more effectively. This mechanism is not as powerful

as those that could communicate in a more strategical fashion

by, for instance, delegating subgoals or notifying discoveries

of unprofitable subgoals. It is equivalent in power to having

agents lacking the mechanism but having increased observa-

bility of the current state. Nevertheless, it is a conceptually

useful way in which to model agent percipience.

In order to produce empirical evidence in support of the fra-

mework we test and evaluate policies on a simulator and then

compare their observed values with those predicted from the

SG. The main interest there is the extent to which the predicted

ranking of policies agrees with the observed ranking. The paper

contains a number of charts derived from these experiments,

and from each one we derive a single quantity—a rank

correlation statistic—that measures the predictive quality

across the set of policies evaluated. In many of these examples

the simulations are deliberately more concrete than the models

employed in the situation graphs, in order that we may assess

how well the predictions stand up in the presence of such an

abstraction gap. We explain how that gap can cause the predic-

tion method to make two distinct kinds of mistake in calculating

policy values, giving rise to fluctuations in the charts.

However, our experience indicates that the gap would need

to be very substantial in order to render the method incapable

of broadly distinguishing between good and bad policies. It is,

of course, a separate question as to how well the predicted best

policies would fare if installed in real-world physical agents

charged with pursuit of the same goals, which amounts to

questioning the significance of a second abstraction gap

between the simulator and the real-world. For instance, some

of our examples seek to model the notion of an agent wander-

ing to various locations in search of particular items. Currently

the simulator represents locations and agent movements only

discretely rather than continuously, whilst it does not represent

agent breakdowns, conflicts, aborted actions and all the other

dysfunctionalities to which real entities are susceptible.

This article is organized as follows. The basic framework is

presented in Section 2 and the methods of policy valuation and

framework tools are presented in Section 3. The extensions

required for a multi-agent environment are presented in

Section 4 and extended to include communication in Section

5. An exploration of the use of memory as perception and

comparison, with an example, with methods that solve the

problem of perceptual aliasing by using state estimation is

given in Section 6. Section 7 positions our approach within

related works and the paper concludes with Section 8.

2. BASIC ASPECTS OF FORMULATION

Our framework will be described through several different

example domains, selected to illustrate its flexibility. There

are two principal data structures upon which the framework

is founded: situations and situation graphs. These are

introduced next and we will use by way of illustration

BlocksWorld, where agents are assumed to operate in an

environment consisting of towers of blocks that can be built

upon or dismantled. Initially, it is assumed there is just one

agent acting. In Section 4 the framework is used to model

and evaluate policies for a group of agents.

2.1. Situations

Any world in which our agents operate is one capable of

assuming various (objective) states. A state in BlocksWorld

might, for example, be represented by [1, 1, 2, 2, 2] signifying

that the state comprises two towers each of size(height) 1 and

three towers each of size 2 (all presumed standing on a

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1187

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

surface). We will denote byO the set of all states for a particu-

lar application. Any agent has three main features: a set P of

perceptions it may have of the world, a set A of possible

actions it may take and a policy relating perceptions to

actions. In any objective state o [O, the agent’s physically

possible perceptions form some subset P(o) # P. A percep-

tion is an observation made by the agent of some aspect of

the objective state and may include introspection of itself or

of other agents. For instance, an agent may be able to ‘per-

ceive’ its previous action, by virtue of a limited memory or

it may be able to perceive that no other agent is currently

holding anything, by virtue of limited communication

between agents, as discussed later. In response to any percep-

tion p [P(o) the agent’s possible actions form some subset

A(p) # A and a policy for the agent is any total function

f :P! A satisfying 8p [P, f(p) [A(p). The number of

possible policies is the product of the cardinalities of the

A(p) sets for all p [P. A situation for the agent is any pair

(o, p) for which o [O and p [P(o). We denote the set of

all situations by S, one or more of which may be designated

goal situations.

A perception does not, in general, capture the entire state of the

world. On the contrary, our low-resource assumption entails

that the agent normally perceives only a very limited amount

of information about that world state. If a perception p fully

described an objective state o then the situation (o, p) could be

contracted simply to o, and the design process would need only

to compare conventional state-transition graphs. However, the

realistic position is one of partial observability. The problem is

therefore how to optimize, for a goal incorporating a world

state, an agent that (generally) cannot recognize that state.

It is important to the framework that the action set A for

every agent shall include a special action which we call

wander and denote by w. The wander action enables the

agent to change its perception without altering the world

state, and exemplifies ‘wandering through the different percep-

tions of a state’. To say that an agent wanders does not necess-

arily entail that it literally moves about spatially. It means only

that it refreshes, and perhaps changes, its perception. A thermo-

stat sensing a sudden change in temperature is in our terms

performing a wander action, as also is an agent that, seeing

the surface, makes a spatial move after which it continues to

see (another part of) the surface. The only difference is that

the latter case is a reflexive transition of its situation, whereas

the former case is not. In BlocksWorld, for instance, w corre-

sponds to enabling the agent literally to wander around on the

surface, so bringing various items into its range of vision.

DEFINITION 2.1. A TR-application is a tuple kO, P, Al com-

prising representations of the assumed objective states (O),

perceptions (P), actions (A).

DEFINITION 2.2. Let kO, P, Al be a TR-application. A situ-

ation is a pair (o, p) where o [O and p [P and p is a

perception that the agent may have of o (i.e. p [P(o)).

2.2. Situation graphs

Our framework for assessing policies potentially considers the

full range of possibilities determined by the assumed world

together with the possible perceptions and actions of the

agent. It employs a structure which we refer to as the unrest-

ricted situation graph G. This shows the situations that a

representative agent called self may be in and the possible

actions it may take. Each directed arc in G signifies, and is

labelled by, some such action. When self is in a situation (o,

p) its possible actions depend only upon p. Analysis of this

graph enables us to extract policies appropriate to particular

goals. After self has acted in a situation its new situation is

determined by the assumed physics of the world (and of the

kind of agent) being modelled. For example, if self is seeing

a 2-tower and places a held block upon it, it is a natural

choice to determine that the result is a 3-tower and that self

is now seeing that 3-tower rather than seeing anything else.

But note that the framework can easily model a situation in

which the outcome was less certain; for example, the place

action might not be successful and the outcome could be

seeing a 2-tower still, or even seeing a 1-tower, the place

action having destroyed the original tower.

DEFINITION 2.3. Let kO, P, Al be a TR-application. The

unrestricted situation graph, denoted by G, is a directed

graph whose nodes are the situations. The arcs emanating

from a situation (o, p) are precisely those corresponding to

A(p) and each one is directed to a situation that self could

be in if that action were taken.

The unrestricted situation graph discloses how any situation

can (or cannot) be reached from another, in particular whether

a given goal situation can be reached from a given initial

situation. It may also reveal subgraphs from which a given

goal could never be reached.

A key feature of our framework is the process of pruning

selected arcs from the unrestricted graph G according to

some policy f, to leave the f-restricted graph, denoted by Gf.

This graph commits the agent to take, in any situation, just

that action determined by policy f and shows what will actu-

ally happen.

We can use BlocksWorld to exemplify these constructions

and some of the issues entailed in considering choices of

policy for a given goal.

EXAMPLE 2.1. Suppose that there is one agent and four

blocks. The blocks can be arranged into towers and the

agent can hold at most one block. There are eight states, any

of which can be represented by a list such as [1, 2], indicating

a configuration of towers composable from the blocks not

being held. Next consider what the agent might ‘see’ in this

world. We assume an agent can see either the surface or one

tower of recognizable height and sufficient descriptors for

this are s0, s1, s2, s3 and s4. Further suppose that the agent

knows whether or not it is holding a block. Two further

1188 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

descriptors h and nh suffice for this. Together, the descriptors

yield eight different perceptions, and valid combinations of

states and perceptions give rise to 19 situations. An example

valid situation is ([3], (s0, h)), whereas the perception (s4, h)

is impossible in a 4-block world.

Finally, assume the agent can perform three kinds of

action—pick (remove and hold the top block of a tower

being seen), place (put a held block onto the surface being

seen or onto a tower being seen) and wander (update what

is being seen). The abbreviations k, l and w suffice to dis-

tinguish these. A possible perception–action pair (p, a) is

((s0, h), w), whereas ((s0, h), k) is not. This follows from the

assumed logic of the chosen descriptors, which derives in

turn from the assumed physics of the application. The syntac-

tical form of the descriptors is here immaterial provided one

retains awareness of what they are intended to denote, and pro-

vided that what they denote are correct properties of the orig-

inal conceptualization. Whilst the syntax ([1], (s0, h)) contains

helpful visual cues to aid that awareness, for analytical pur-

poses it may as well be iconized to a simpler form such as

(2, b) or even 2b. In the sequel we shall often use these

simpler forms in order to reduce presentational clutter.

Figure 1 shows all the possible state and perception descrip-

tors together with their iconic labels (1, 2, 3, . . . etc. and a, b, c,

. . . etc., respectively) for Example 2.1. Here, s0 denotes that

self sees the surface, sn (n . 0) denotes that it sees a tower

of height n, h denotes that self sees that it is holding a block

and nh denotes that it sees that it is not holding a block. The

figure also shows, for each perception p, the set O(p) of associ-

ated states and the set A(p) of associated actions. Figure 2

shows the resulting unrestricted SG G. For the sake of com-

pactness, a situation such as (2, f) is shown there simply as 2f.

The next step is to consider what the agent might be

required to achieve and what its behaviour might be.

A policy for the agent in Example 2.1 might be

s1; nh! k; s1; h! l; s2; h! l;
s3; h! l; s2; nh! w; s3; nh! w;
s4; nh! w; s0; h! w; s0; nh! w

giving the f-reduced graph shown in Fig. 3.

In general, the result of any agent’s actions may vary

according to the initial world state presented to it. However,

in this example the result is generally (but not always) a

4-tower (that is, a tower of size 4) provided that w is

implemented in a fair manner—that is, allows all perceptions

in the world to be experienced in the long run. Once this tower

has been built the agent can only wander indefinitely unless

terminated by some extraneous mechanism.

The state having a 4-tower is, in fact, the intended goal for

this policy. This goal is not explicit in the policy, nor is it made

known to the agent by any other means. Instead, the policy has

been constructed by a procedure that takes account of the

intended goal (or goals).

Even for a simple world and goal, a suitable policy can be

very difficult to compose using intuition alone.

Let S be the set of all situations in the problem formulation

(and hence in G and in all its policy-restricted subgraphs).

Then the choice of f partitions S into two disjoint subsets Nf

and Tf called the nontrough and the trough, respectively. Nf

contains the goal and all situations from which the goal is

reachable under policy f. Tf contains all the other situations.

This partitioning facilitates useful economies in the operation

of the framework.

FIGURE 3. An f-restricted graph (Example 2.1).FIGURE 1. States, perceptions and actions (Example 2.1).

FIGURE 2. Unrestricted situation graph (Example 2.1).

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1189

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

In Fig. 3 the trough, circled for emphasis, is the node set

f(1, e), (1, i), (7, a)g. From all situations outside the trough,

the agent will achieve the goal unless it subsequently enters

the trough. For instance, from (7, h) it may wander into the

trough, but if it instead wanders to (7, b) then the goal will

be achieved.

The essential problem in this example is in deciding upon

the best actions for perceptions a and e. Since each one has

two possible actions there are four possibilities to consider.

It turns out that none of them can avoid a trough somewhere.

For instance, if we modify the original policy by choosing k

for perception e and w for perception a, we obtain a different

f-restricted graph and this policy

s1; nh! k; s2; nh! k; s2; h! l;
s3; h! l; s1; h! w; s3; nh! w;
s4; nh! w; s0; h! w; s0; nh! w

In this case the set f(2, d), (2, i), (3, e), (6, a), (6, h)g is the

trough. Each of perceptions a and e has the property of

being associated with several states having different ‘best’

actions. The limited perceptions of the agent render it unable

to know which world state it is in and hence which of the

possible best actions to take.

Fundamentally, given the particular block-world and goal

stipulated, the agent in this example is not perceptive

enough to cope well with all situations. It suffers from percep-

tual aliasing, meaning that several (different) situations are

perceived similarly by the agent. In [4] one way of elegantly

improving the agent is to equip it with a single-register

memory capable of recording whether it has ever seen a

tower of size at least 2, and to treat the reading of the register’s

state as another perception. For this modified agent one can

find a much better (though still imperfect) policy.

Using registers in this way to deal with perceptual aliasing

presumes that their stored contents, at the moment they are

looked up and exploited, are useful to the agent in dealing

with the current situation. For instance, if an agent recalls

from its register that it once saw a tower of size 2 then it

may not follow that such a tower persists in the current

state. Previous actions by other agents or exogenous sources

may by now have reduced all towers to size 1.

Only if these possibilities can be excluded can the agent rely

upon its stored memory as being a persisting truth about the

world, provided also that it has not itself altered that 2-tower

since it last saw and memorized it. In most of our studies we

have not assumed any memorizing capability for our agents,

focusing instead upon what can be achieved without the

facility and thereby maintaining our minimal-hardware

assumption. However, in cases where modest amounts of

memory might be justified we can easily model the feature

in our framework as it stands and Example 6.1 in Section 6

illustrates this.

3. POLICY EVALUATION FOR SINGLE AGENTS

The value of an agent’s policy is a global measure of how well

the agent, proceeding from any situation, performs in the long

run under that policy. Evaluating a policy cannot, in general,

be reduced to local considerations of how the agent acts at par-

ticular situations, since an action taken for a perception p in

one situation might produce very different outcomes when

taken for the same perception in a different situation.

Instead, we must estimate the worth of a policy f as the sum

of the expected values of all the situations in Gf, where the

expected value of a situation s is the benefit to the agent of pro-

ceeding from s.

This section describes how this estimation is achieved in a

single-agent context using the discounted-reward principle

[14], defined as follows.

DEFINITION 3.1. Let f be a policy for a TR-application kO, P,

Al and let s ¼ (o, p) be a situation in Gf and let SS be the suc-

cessor set of s. The discounted reward V(s, f), measuring the

benefit of proceeding from s, is given by the Bellman formula

Vðs; f Þ ¼ Su[SSðPsu � ðYsu þ gð f ð pÞÞ � Vðu; f ÞÞÞ

In the above, Ysu is the immediate reward for the action f(p)

that takes s to u, when the agent has perception p. Psu is the

probability that from s the agent proceeds next to u and the

factor g(f(p)) discounts the benefit of taking that action at s.

Note that for a situation with no successors, this formula

gives the expected value as 0. Normally, we choose 0 , g

(f(p)) , 1 to reflect the cost to the agent—in time or other

resources—of performing successive actions. The formula

for V(s, f) given in Definition 3.1 is called the infinite

horizon discounted reward formula and is suitable when we

are interested in the long-term behaviour of an agent. When

the interest is in agent behaviour over shorter, fixed-length

paths, a different formula is appropriate; this is the finite

horizon discounted-reward formula as defined next.

DEFINITION 3.2. Let f be a policy for a TR-application kO, P,

Al and let s ¼ (o, p) be a situation in Gf and SS be the

successor set of s. The finite discounted reward V(s, f, k),

effectively measuring the benefit of the agent proceeding

from s and having at most k steps available is given by the

formula

Vðs; f ; 0Þ ¼ 0

Vðs; f ; kÞ ¼ ðif k � 1Þ

Su[SSðPsu � ðYsu þ gð f ð pÞÞ � Vðu; f ; k � 1ÞÞÞ

Unless one has good reason to distinguish rewards for

actions from different situations, the fine tuning provided for

in the above definitions can be dispensed with. It then suffices

1190 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

to use some fixed values r, R and T and a fixed discount factor

0 , g , 1 such that

Ysu ¼ R if the action f ðpÞ taken at s leads

immediately to a goal

Ysu ¼ T if the action f ðpÞ taken at s leads

immediately to a node in the trough ðfor f Þ

Ysu ¼ r otherwise

For the infinite horizon case the situations’ values are related

by a set of linear equations which, since g , 1, have unique

finite solutions even when Gf contains cycles signifying non-

terminating behaviour.

Since we are interested in policies that perform well, on

average, from whatever state an agent may find itself in, we

define the (predicted) value of a policy f, denoted Vpre (f) to be

the weighted average of V(s, f) over all situations s in the

f-reduced graph. In this paper we assume all nodes are equi-

probable as initial nodes or as nodes resulting from unpredictable,

but rare, exogenous behaviour, so the average is the usual mean.

DEFINITION 3.3. Let f be a policy for a TR-application kO, P,

Al and S be the set of situations in Gf. The value Vpre(f) of

policy f is given by

Vpreð f Þ ¼ Ss[Sðis � Vðs; f ÞÞ

where is is the probability that an agent may initially be in

situation s.

The relative values assigned to R, r and T govern the extent

to which the method accords merit to the agent for reaching a

goal rather than not doing so, and penalty for entering a trough

rather than not doing so. In general, choosing R � r ranks

more highly those policies well-disposed to the reaching of

the goal and choosing r � T will rank steps leading to the

trough very lowly. The value of g controls the separation

(but not, in general, the ranks) of the policies’ values. Both

the finite horizon formula and the infinite horizon formula

give the value of a policy as a sum of the form ar þ bR þ

dT. For the experiments reported in this paper we have used

the infinite horizon method with values of r ¼ T ¼ 21, R ¼

100 and g ¼ 0.9. It is shown in the Appendix that the finite dis-

counted reward for a situation (given by Definition 3.2) tends,

in the limit for k, to the discounted reward for a situation

(given by Definition 3.1).

3.1. Policy prediction

As the examples in this paper demonstrate, even quite simple

problems can determine large and complex situation graphs

whose manual characterization would be highly tedious and

error-prone. To reduce the scope for erroneous formulation

we employ, for BlocksWorld (and, potentially, other scen-

arios), an situation graph generator program which, for any

designated set of blocks, agents, actions and goal, autono-

mously constructs the unrestricted situation graph and

further checks it against robust integrity constraints. We

further employ policy predictor programs to compute policy

values according to Definition 3.2, and also to compute the

upper bounds on their success-rates. In fact, in most of our

experiments we found that, over the infinite horizon, the

values of policies which tend to cause the agent to enter a

trough turn out to be much lower than those that do not,

even when T ¼ r. Moreover, the ranking of policies is

largely insensitive to the choice of values for r, R and g, pro-

vided that R � r. The smaller g is, the less important is the

dominance of R over r. Thus the method does not require

domain-oriented intuitions about these parameters beyond

giving prominence to goal situations.

We note here that if the only arc for some situation s is a

reflexive arc, then s is necessarily in the trough and the

value of s is r/(1 2 g). However, it turns out that if a node is

in the trough and has at least one exit arc, its value is also r/

(1 2 g). This is proved in [13].

Returning to Example 2.1, the A(p) sets determine that there

are 256 possible policies. There are 19 situations, and varying

the policy merely varies the arcs connecting them. A test run

was made for the case r ¼ 21, R ¼ 100, g ¼ 0.9 which ident-

ified two optimal policies

a! w; b! l; c! l; d! k; e! k;
f ! w; g! k; h! w; i! w

a! w; b! l; c! l; d! k; e! k;
f ! w; g! w; h! w; i! w

each having an overall value of 37.3. The policy correspond-

ing to the f-reduced graph Gf in Fig. 3 for this example, namely

a! l; b! l; c! l; d! k; e! w;
f ! w; g! w; h! w; i! w

is predicted to be the third-best one, having overall value 35.5.

The graph Gf has a trough, containing three situations, which

can be entered from eight exterior ones. By contrast, for each

of the two optimal policies Gf has a trough, containing five

situations, which can be entered from just one exterior one.

The policy values, therefore, correctly reflect the propensity,

on an average, of the agent failing to reach the goal by entering

a trough.

In small-scale contexts an optimal policy can be determined

by simply evaluating all policies and extracting the best of

them. Evaluating any particular policy amounts only to

solving a set of simultaneous linear equations whose variables

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1191

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

are the situation values. We shall use the acronym EPE

(exhaustive policy evaluator) to denote this simplest of

optimization algorithms. EPE is particularly useful when it

is desirable to know the values of all policies, for instance to

draw comparisons with simulation results. Later in the paper

we will apply EPE to several examples for that specific

purpose, that is, to measure how well the predictions across

the entire policy spectrum correlate with observed (simulated)

behaviour.

Our software was developed primarily using LPA-Prolog1

through transparent and easily-adapted representations.

Despite the relative tardiness of an interpretive formalism

such as Prolog, it takes only a minute or so for EPE to evaluate

10 000 policies over 20 situations on an Apple G4 platform.

In mid-scale contexts, which might typically offer some

millions of policies over some hundreds of situations, it is

more appropriate to employ one or other of our new

branch-and-bound optimizers that will be described presently.

These two were developed first in Prolog but subsequently

reprogrammed in Java whose execution speed we found to

be approximately 300 times faster than Prolog. These new

optimizers are named iterative branch and bound (IBB) and

fixed stratification branch and bound (FSBB). Both of them

expand a tree whose leaves are partial policies and whose

value bounds are compared on-the-fly in order to prune out

sub-optimal sub-trees. The efficiency of IBB derives in part

from its use of value iteration to evaluate leaves, whilst

FSBB does no such iteration but instead derives its efficiency

from applying the Bellman formula to highly localized situ-

ation subsets rather than to the entire situation set. The relative

efficiency of these two algorithms turns out to depend criti-

cally upon features of the situation graph and of the chosen

goal, as we will show presently for particular examples.

3.2. Iterative branch and bound IBB

In this section we describe a particular instance of a branch

and bound method, modified and adapted for the SG frame-

work from an algorithm of Littman [18]. In order to describe

it we define some new terms.

DEFINITION 3.4. Let kO, P, Al be a TR-application. A full-

policy is the one with a rule for every perception. A part-policy

is the one which has rules for a (possibly empty) subset of the

perceptions. A perception p for which A(p) is a singleton is

called fixed. A perception p which is associated uniquely

with an objective state o is called free. All other perceptions

are constrained. A part-policy that gives a rule for every

fixed or constrained perception is called an effective policy.

It follows from Definition 3.4 that free perceptions are

necessarily associated uniquely with a situation. The set of

(full) policies can be structured using a tree, called a policy

tree and denoted T, in which each node is labelled by a

perception p and each arc by an action in A(p). If P has size

n, then each branch of a tree developed to depth n represents

a full-policy and each branch of a tree developed to a depth

of ,n represents a part-policy. Recall from Definition 3.3

that the value Vpre(f) of a full-policy f is the average of the

values V(f, s) for each situation s. This value is approximated

by iteration using the recursive Equation (1)

Viþ1ð f ; sÞ ¼ Su[SSðsÞPsu
ðYsu þ Við f ; uÞÞ ð1Þ

where SS(s) is the set of successor states of s, Psu the prob-

ability of the transition s to u and Ysu the reward for taking

it, all as prescribed by the policy f.

The value of a part-policy f is given an upper bound, com-

puted using a similar formula to that in Equation (1), except

that an optimistic value is used for those situations where

actions have not been specified. That is, Equation (2) is used.

Viþ1ð f ; sÞ ¼
Su[SS1ðsÞPsuðYsu þ Við f ; uÞÞþ

maxaSu[SS2ða;sÞðPsuðYsu þ Við f ; uÞÞÞ
ð2Þ

where SS1(s) gives successor states for situations for which

policy f gives an action and SS2(a, s) gives the successor situ-

ations of s assuming action a is taken. The value computed by

Equation (2) will be an upper bound for the value of any full-

policy that extends part-policy f. In the policy tree T each leaf

node can be annotated by the policy value as computed by

Equation (1) and each non-leaf node can be annotated by an

upper bound for the policy value, as computed by Equation

(2). In what follows we will assume that the best predicted

policy value only is required although it is easy to keep a

beam of size m if the best m predicted policy values are

required. A policy tree is searched left-right and depth-first

and nodes that remain to be evaluated can conveniently be

maintained on a stack. A global optimum policy value B is

maintained; initially B is set to a value of some known (reason-

ably good) policy. Thereafter, the branch and bound procedure

IBB, whose pseudocode is given in Fig. 4, is used. Note that in

the algorithm a node is associated with a part-policy or a

full-policy.

The IBB procedure can be improved by some simple steps

described next.

(i) Clearly, if a perception p is fixed with action a the rule

must be p! a and the initial part-policy cPi can

include this. If, through some means or other, actions

for any other perceptions are also fixed, the appropriate

rules can be added to cPi.

(ii) There is no need to select free perceptions (see Defi-

nition 3.4), since the value of a part-policy Pi which

has rules for all constrained perceptions (i.e. an effective

policy) is equal to the optimistic value of Pi, since there

1Logic Programming Associates Ltd., London, UK, (http://www.lpa.co.

uk).

1192 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

is no constraint on which action to select for the free

perceptions, allowing the action which maximizes the

node value to be selected and assuming the optimum

actions are taken thereafter for all free perceptions.

(iii) In many cases the iterated values computed by

Equation (2) increase monotonically. Therefore,

when computing the optimistic value for a part-policy

Pi if an interim value is greater than bv the iterations

can be terminated since the computed value could

not be less than bv.

In case step (ii) above is implemented the returned (effec-

tive) policy bPi may not be a full-policy, although the returned

value bv is the value of the optimal policy. The optimal policy

can be easily obtained by running IBB starting with the effec-

tive policy bPi and treating all free perceptions as constrained

perceptions. As an illustration the tree for Example 2.1,

including the efficiency improvements, is shown in Fig. 5.

Constrained perceptions are fa, d, e, hg, i is fixed and fb, c,

f, gg are free. The initial part-policy is fd! k, h! w, c!

lg. An initial estimate is 376 for this policy extended by

setting other actions to w.

IBB, with the simple improvements above has been roughly

implemented in both Prolog and Java and some experimental

results are given in Table 1 and commented on below. The

reported tests include two examples from BlocksWorld and

one example from a GridWorld adapted from [19]. Both

Examples 3.1 and 3.2 make use of a standard 10-block

world including reflexive wander, for which there are 20 per-

ceptions. Of these, the perception (s0, nh) is fixed with the

only possible action of wander, and three perceptions are

free, namely (s10, nh), (s9, nh) and (s9, h), leaving 16 con-

strained perceptions. The parameters used in all cases were

r ¼ 21, R ¼ 100 and g ¼ 0.9.

EXAMPLE 3.1. The goal is to see a 10-tower. It is the one that

is recognizable by the agent and for which it is fairly easy to

construct a likely optimal policy. In fact, the optimal policy is

fs1; nh! k; s2; nh! k; s3; nh! k; s4; nh! k;
s10; nh! stop; s4; h! l; s5; h! l;

s6; h! l; s7; h! l; s8; h! l; s9; h! lg

and all other rules are to wander.

EXAMPLE 3.2. The goal is a multi-goal (seven separate

goals) and one which the agent cannot recognize when it is

achieved. It is described as ‘any state in which there are

exactly three towers of equal height (and not also two

towers of equal height), and the agent is seeing the surface’.

This multi-goal includes the seven single goals ([3, 3, 3, 1],

nh), ([2, 2, 2, 4], nh), ([1, 1, 1, 7], nh), ([2, 2, 2, 1, 3], nh),

([1, 1, 1, 2, 5], nh), ([1, 1, 1, 3, 4], nh), ([2, 2, 2, 1, 1, 1, 1],

nh) and is one, we claim, for which it is not obvious what

the optimal policy might be. The optimal policy is, in fact,

fs2; nh! k; s4; nh! k; s5; nh! k; s6; nh! k;
s8; nh! k; s9; nh! k; s10; nh! k;

s0; h! l; s2; h! l; s6; h! lg

FIGURE 4. Branch and bound procedure IBB.

TABLE 1. Table of results.

Expt
IBB(sec)

FSSB(sec) Nodes

J P P IBB

Ex3.1a 22 6000 100 385

Ex3.1b 225 N/A 3893

Ex3.2a 20.2 5400 79200 363

Ex3.2b 591 N/A 9483

Ex3.3 0.16 240 N/A 209

FIGURE 5. Procedure IBB policy tree T for Example 2.1: (1) Initial

value is 376, search starts with a or e, choose e; (2) Best value ¼

708, continue with a; (3) Best value ¼ 507 ¼ new optimum; (4)

Best value ¼ 708 ¼ new optimum; (5) Best value ¼ 796 2 continue;

(6) and (7) are abandoned as 606 , 708 and 674 , 708.

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1193

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

and all other rules are to wander. The diffuse nature of the goal

situations in Example 3.2, and the large number of situations

that are partially similar to one or other of them means that

most policies turn out to be pretty bad. For although a

policy may be designed to achieve one part of a goal situation,

that same policy may also target a similar, but non-goal situ-

ation. Even the optimal policy does not reach a goal situation

from every situation. For example, in the situation ([1, 1, 1, 1,

1, 1, 1, 1, 1, 1], nh) an agent can only wander and so never

make any progress. Nevertheless, the optimal policy does

not have any trivial ‘loops’, such as fs2, nh! k, s1, h!

lg, which would have an agent in situation (s2, nh) forever

picking up and putting down.

Table 1 gives runtimes in Java and Prolog for two different

selection orders for perceptions in IBB. It also gives the total

number of nodes in IBB for which a (optimistic) policy

value is computed.

EXAMPLE 3.3. The grid world has 47 squares and is shown

in Fig. 6. The agent can move in any of the four compass direc-

tions (N,S,E,W) and the goal is marked ‘*’. An attempted

move into a wall results in no movement. There are just

seven constrained perceptions, which are indicated by the

labels fa, . . . , gg in the figure, which also labels the squares

(f11, . . . , 47g and shows the directions proposed by the

optimal policy.

This example has many free perceptions, giving it a differ-

ent character from those of BlocksWorld.

The optimal policy is shown in Fig. 6. It is not the only one;

e.g. the north pointing arrows in the bottom row could be east

pointing. Example 3.3 was also run using the parameters

r ¼ 0, R ¼ 0 and g ¼ 0.9 and the optimal policy was the

same (although it had a different value).

The number of nodes considered by IBB depends on the

initial estimate of best value, but is very sensitive on the

choice of perception p selected within the while loop at

each step (as can be seen from Table 1). The particular

implementation of IBB required that the perception order for

every branch of the tree was the same, and for both Examples

3.2 and 3.3, a good order of the constrained perceptions was

found (by trial and error) to be

s4; nh s3; nh s2; nh s1; nh s0; h s1; h s2; h s3; h

s5; nh s7; h s6; nh s6; nh s4; h s5; h s8; nh s7; nh

In Table 1 J and P abbreviate Java and Prolog, and the node

counts are for the Java implementations. Ex3.1a and Ex3.1b

use a good order for perceptions in IBB and Ex3.1b and

Ex3.2b use a bad order. The (longer) Prolog timings for IBB

and FSBB are very approximate and the timings for Prolog

for Ex3.1b and Ex3.2b were not found.

Currently we are investigating how to find a good percep-

tion order for IBB. Another approach makes use of an exten-

sion of Dijkstra’s algorithm to compute a set of partial

policies C, such that any policy Pi for which the goal is

reachable from at least one situation is a superset of one

of the policies in C. For Examples 3.1 and 3.2 C has size 5

and 97, respectively. C might be used in IBB to choose a

good perception order using the notion of Information Gain

[20] and for filtering policies evaluated by either IBB or FSBB.

3.3. Fixed stratification branch and bound (FSBB)

The FSBB algorithm generates a tree in which each leaf is a

partial policy p, the root being the empty policy fg. A leaf is

marked as complete if it commits some action to every possible

perception. The leaves awaiting expansion to their child leaves

are held in a prioritized queue as determined by some selection

function. If a leaf is selected for expansion then it is deleted

from the queue and its children are added to the queue.

Every leaf p is accompanied by a lower bound L and an

upper bound U upon the values of all completed policies

that are supersets of p, these bounds being calculated when

the leaf is created. For the root, L ¼ Tr and U ¼ R where Tr

is the trough value r/(1 2 g). A leaf is selectable for expansion

only if L = U. After each expansion step the queue is pruned

to remove any leaf whose upper bound is less than some other

leaf’s lower bound.

The policy extensions entailed when creating children are

determined by a fixed stratification (partitioning) of the situ-

ations prior to generating the tree. For k . 0 each kth stratum,

denoted Nk, contains every situation from which the shortest

topological path (ignoring the arcs’ action labels) in the unrest-

ricted situation graph G to a goal has length k. Stratum N0 con-

tains only the goal(s). Such stratification presumes G to be

connected, which holds for all domains used in this paper. A

leaf at depth k . 0 in the tree is a commitment of actions to

just those perceptions occurring in strata Nj, j , k.FIGURE 6. Grid for Example 3.3.

1194 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

The expansion of an incomplete leaf p at depth k generates

a child p < p0 at depth k þ 1 for each distinct way of choosing

a set p0 of commitments of actions to those perceptions that

occur in Nkþ1 but in no Nj, j , k. If there are no such percep-

tions then p0 can be only f g so that expanding this p produces

a single child p at depth k þ 1. If a complete leaf p at depth k

is selected for expansion then (as dictated above) it must have

distinct lower and upper bounds. Its expansion consists of

creating a single child p at depth k þ 1 whose lower and

upper bounds are identically the true value V of p, this

being calculated by a standard Bellman evaluation of the

entire situation set. Such a child is called a Bellman leaf

and—since its bounds are not distinct—is not itself selectable

for expansion. After the usual pruning that follows any expan-

sion step the queue must contain at most one Bellman leaf.

Our use of FSBB has mostly employed a selection function

which keeps the queue size relatively low in order to reduce

overheads in the tasks of selection and pruning. If the queue

contains no Bellman leaf then this function selects, from the

leaves of greatest depth, one with a maximal upper bound.

Otherwise, if a Bellman leaf with value V exists, this function

selects a leaf whose upper bound U gives a minimal value of

U 2 V. Under this selection function the queue must even-

tually contract to a single Bellman leaf and this must be the

optimal complete policy.

The efficiency of FSBB depends upon its capacity to prune

leaves and hence the subtrees rooted at them, and this depends

in turn upon how tightly the bounds assigned to the leaves can

be drawn and at what computational expense. Before describ-

ing how the bounds are calculated we illustrate the features of

FSBB described so far using the simple 4-block problem of

Example 2.1. The stratification of its graph determines that

N0 ¼ f5gg, N1 ¼ f5i, 8cg, N2 ¼ f8hg, etc. Figure 7 shows the

developing policy tree down to depth 2, as determined by

the action choices for the perceptions in those first three

strata, together with their bounds and pruning as computed

using FSBB.

The bounds for a selected leaf p at depth k are calculated in

a manner which aims to minimize the time expended on eval-

uating situations. Specifically, the only situations evaluated

using the Bellman formula are those in stratum Nk, so that

the only arcs considered in that evaluation are those that

emerge from situations in that stratum. In general the subgraph

so defined is much smaller than the total graph dealt with by a

standard Bellman evaluation of all situations.

The stratification criterion determines that any arc from Nk

in the subgraph must be directed either into Nk21 or into Nk or

into some Nj, j . k. Each such arc is assigned a reward rwd(s)

representing an estimate of the value of the situation s to which

it is directed, to compensate for the fact that s is treated by the

subgraph’s Bellman evaluation as having value 0 since it has

no successors in that subgraph.

This reward estimation for the subgraph exploits a prior

estimation of values of situations in Nj, j . k. Each such situ-

ation s is examined to determine whether or not there exists a

path from s to a goal having the property that, wherever it

makes a commitment p! a, (i) every other commitment it

makes to p also chooses a and (ii)if p commits an action to

p then that action is a. If s has such a path then it is termed

p-good. The quest for such a path is undertaken by depth-first

search, optimized using lemmas and loop-avoidance.

Additionally, two parameters Rlowf
and Rhighf

are needed for

the reward estimation; these are inherited from the leaf’s

parent f and will be defined presently.

Given the above, each estimate rwd(s) in the subgraph is

calculated as follows:

for the lower-bounding case:

s [Nk�1 : rwdðsÞ ¼ Rlowf

s [Nk : rwdðsÞ ¼ r

s [Nj; j . k : rwdðsÞ ¼ Tr

for the upper-bounding case :

s [Nk�1 : rwdðsÞ ¼ Rhighf if s is p-good

rwdðsÞ ¼ Tr otherwise

s [Nk : rwdðsÞ ¼ r

s [Nj; j . k : rwdðsÞ ¼ r þ gðð1� gj�kÞTr

þ gj�kRhighf Þ if s is p-good

rwdðsÞ ¼ Tr otherwise

Thus, the subgraph is Bellman - evaluated twice, first to esti-

mate lower bounds for the situations in Nk and then to estimate

their upper bounds.

The bounding of the leaf as a whole must also estimate all

the other situations. For any situation in Nj, j . k, its lower

bound is Tr, whilst its upper bound is (1 2 g j2k)Tr þ g j2k

Rhighf
if it is p-good but Tr otherwise. For any situation in

Nj, j , k its bounds are the same as were calculated for it in

the leaf’s parent f. Then, the leaf’s overall (lower or upper)FIGURE 7. FSBB policy tree T for Example 2.1.

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1195

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

bound (L or U) is the mean of the (lower or upper) bounds of

all the situations. With L and U thus determined, our newly

created leaf p is attended also by values for Rlowp
and Rhighp

(for use when bounding its own children), calculated as

follows: if no situation in Nk is p-good then Rlowp
¼

Rhighp
¼ Tr, but otherwise Rlowp

is the least of the lower

bounds of the p-good situations in Nk and Rhighp
is the greatest

of their upper bounds. For the root node, Rlowp
¼ Rhighp

¼ R.

FSBB performs at its best for cases where not many distinct

perceptions are concentrated in the first few strata. Thus it

solves Example 3.1 in 100 s with Prolog, much faster than

IBB. By contrast Example 3.2, where there are many percep-

tions in the first few strata, is solvable by FSBB in about

22 h with Prolog, much slower than the best-case run using

IBB. In examples like this, where there are many perceptions

in the first few strata, the policy tree is initially very bushy.

Experiments showed that these initial leaves are insufficiently

discriminated to allow judicious selection.

3.4. Experimental validation

We tested the quality of the policy predictor by using a Simu-

lator to simulate agents operating under the various policies.

In the introduction it was stated that the simulator is the sole

comparator against which the model using situation graphs is

evaluated. When the simulator uses exactly those descriptors

that appear in the model it precisely simulates traversing the

f-restricted situation graph.

We call this exact modelling, since the model (situation

graph) and the simulated world describe in exactly the same

way the world transitions that can occur. This mode of model-

ling is useful for validating the software, in that the policy

values obtained by prediction are expected to agree exactly

with those obtained by simulation.

More generally, a simulated world may contain and exploit

more detail than that expressed in the model. This is because

the desired level of detail in the simulated world, intended to

represent some real world, may be too demanding in scale to

be expressed practicably in the model. In this mode, which

we call abstract modelling, the model’s situation descriptors

are less detailed than those employed by the simulator.

For example, a simulated BlocksWorld might assign towers

to cells in a grid. A particular state might have two 1-towers

and one 2-tower, each with its own cell position. The descrip-

tor of such a state in the simulator might be a data structure

such as [(1,(3,5)),(1,(2,2)),(2,(1,6))]. The descriptor of the

agent’s perception of this state might be (s(2, 2), nh), denoting

that the agent is seeing whatever is in cell (2, 2) and is not

holding. This level of detailing makes it possible for the simu-

lator to ‘know’ that the agent is seeing the particular 1-tower in

cell (2, 2). By contrast, the model might use a simpler descrip-

tor such as [1, 1, 2] for the state and a simpler one such as (s1,

nh) for the perception, thus forming a more abstract descrip-

tion of the situation. In this description it is not possible to

express which particular 1-tower is being seen by the agent.

The abstraction gap between the two levels of detailing is

such that events capable of being distinguished in the simu-

lator cannot be distinguished in the model. For instance, if

the agent now wanders in the simulation to acquire the percep-

tion (s(3, 5), nh) then it is again seeing a 1-tower but a different

one from that previously seen. This model, however, does not

represent this detail in the situation graph.

A simulation traverses part of an implicit situation graph GW

which, if made explicit, would employ these more detailed

descriptors to represent the situations of the simulated world

W. The part traversed, denoted Gf
W, is the f-restriction of GW

as determined by the policy f. Reference to this implicit

graph enables us to state some useful principles governing

the correctness of our modelling with the (generally) simpler

and explicit graph Gf.

3.4.1. Modelling principles

Let f be a policy for the TR-application kO, P,Al and Gf be an

f-restricted situation graph. Let kOW, PW, AWl be the corre-

sponding simulated application and GW be the simulated

situation graph and Gf
W its f-restriction.

Let TR be the TR-application kO, P, Al and Gf be an

f-restricted situation graph for TR. Then the following prin-

ciples hold:

Soundness of actions in Gf: Every action a [A models a

simulated action in AW.

Completeness of actions in Gf: Every simulated action in

AW is modelled by some action a [A.

Soundness of situations in Gf: Every situation (o, p) [
O � P models a situation in GW.

Completeness of situations in Gf: Every situation in GW

is modelled by some situation (o, p) [O � P.

Soundness of arcs in Gf: Every arc in Gf corresponds to

an arc in Gf
W.

Completeness of arcs in Gf: Every arc in Gf
W is modelled

by some arc in Gf.

Informally, in exact modelling the correspondence between

situations in Gf and GW is one-one, whereas in abstract

modelling this is not so, since the Gf is a further abstraction

of the simulated world.

The simulator operates for a single agent in the following

way. A single run begins with the agent assigned to some

chosen situation s in Gf. In the case that s corresponds to

several situations in Gf
W, one of those situations is chosen ran-

domly. The simulator then drives the agent’s subsequent

activity in a stepwise fashion, in each step making it

perform the action dictated for its current perception by the

policy f, thus updating its simulated situation. In the case of

a non-deterministic action the next simulated situation is

chosen randomly from those that are possible. The agent

implicitly traverses a path in Gf from s. The run terminates

when the agent either reaches the goal or exceeds a prescribed

1196 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

bound B on the number of transitions performed. As the path is

traversed, the value of the run is computed incrementally on

the same basis as used in the policy predictor. The value of

a run of n steps is given by the formula

V ¼ r1 þ r2gþ � � � þ rn�1g
n�2 þ rng

n�1

where ri is the reward for the ith step. If the agent reaches a

trough situation, then the final value of the run will always

be r/(1 2 g) and so the run can be terminated prematurely

without any loss of information. Equal numbers of runs are

executed for each initial situation s. The mean of observed

values V over all runs for all s then gives the observed

policy value Vobs(f). For exact modelling and a Gf with no

loops it can be shown by induction on the maximum number

of steps in Gf that the Principles of Formulation imply that

Vobs(f) is equal to Vpre(f). This property uses the fact that, in

exact mode, each arc for a non-deterministic action taken

from a situation s has equal probability. When Gf has loops

a similar result holds, namely that the expected value of

Vobs(f) approaches Vpre(f), as the maximum number of steps

allowed in a simulation run (i.e. the bound B) tends to infinity.

For abstract modelling these properties cannot hold in general

since the situation graph is less detailed than the behaviour of

the simulator. In particular, the probabilities on the arcs for a

non-deterministic action can only be estimated in the model.

The simulator also reports the observed success rate SRobs(f)

for the policy, measured as the percentage of runs that reach

the goal. The success rate can be predicted independently of

the simulator by considering the reachability of the goal in

Gf. By definition, there cannot exist any arc in Gf directed

from Tf to Nf. However, there may exist one or more in the

opposite direction, in which case we describe Gf as NT-bridged.

The policy predictor has the secondary function of determining

Nf, Tf and the NT-bridged status for any policy f.

If Gf is not NT-bridged then the agent can reach the goal

if and only if its initial situation is in Nf, so that its

predicted success rate SRpre(f) (as a percentage) is exactly

l ¼ 100 � jNfj/jSj. If Gf is NT-bridged then we have only

the weaker relationship SRpre(f) , l. In either case l provides

an upper bound on SRpre(f), which we may then compare with

SRobs(f). Simulated runs curtailed by the bound B may not

attain a reachable goal. So in general SRpre(f) will overestimate

SRobs(f) by an extent that depends on B.

For a set F of n policies we can measure the correlation

between their observed and predicted values as follows. A

pair (f, g) [F � F (distinct f, g) for which Vpre(f) � Vpre(g)

is concordant if Vobs(f) � Vobs(g), but is otherwise discordant.

If C is the number of concordant pairs and D the number of

discordant pairs, then the Kendall rank-correlation coefficient

[21] tF forF is 2 � (C 2 D)/(n � (n 2 1)). We can re-express

this measure as a percentage QF ¼ 50 � (1 þ tF). In the best

case QF ¼ 100%, when the predicted and observed ranks of all

policies agree perfectly. In the worst case QF ¼ 0%, when

they disagree maximally. The QF values cited in the case

studies we report here all imply, with . 99.75% confidence,

that the observed and predicted policy values are correlated.

To visualize the correlation of predictions with test out-

comes for a set F of n policies, those policies’ observed

values are charted against the ranks of their predicted values

(observed policy values are measured along the vertical axis,

and predicted ranks along the horizontal one). Overall predic-

tive quality is reflected by the extent to which the chart

exhibits a monotonically decreasing profile. For Example 2.1

if the observed policy values, Vobs(f), are charted against the

ranks of their predicted ones, Vpre(f), the chart obtained,

shown in Fig. 8, decreases monotonically, showing the pre-

dicted ranks to be in accordance with the ranks obtained by

simulation. The Kendall measure QF is 99.56% in this case

and from 1007 simulated runs per policy (thus, 53 for each

initial situation) with bound B ¼ 100, the same two policies

are identically observed as optimal.

When computing the predicted policy values using the pre-

dictor program we suppress any arcs emergent from the goal in

order to mirror the simulator’s behaviour in terminating a run

when the agent reaches the goal.

Although the prediction parameter values used throughout

are R ¼ 100, r ¼ 21 and g ¼ 0.9, we determined by prior

experiments that, provided that R � r and 0 , g , 1, other

choices would not have altered the results or conclusions

reported here. Similarly, allowing the value of r to vary

from one transition to another, particularly for transitions

that enter the trough, might better distinguish between

various ‘bad’ policies. However, the nature of the discounted-

reward formula is that policies that reach the goal at all have

much higher values than those that do not, and we were pri-

marily interested in the former policies. The contribution to

the policy value of trough nodes depends on the closeness of

such situations to the start node.

3.5. Predictive quality

As explained above, in the single agent case the policy

rankings obtained from the predicted policy values for

exact modelling were very close to those obtained from the

observed policy values obtained from a simulation. The

small variations occur in graphs with loops, since the predictor

FIGURE 8. Observed policy values in Example 2.1 (exact mode).

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1197

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

uses the infinite horizon formula whereas the exact simulator

uses a finite horizon given by the bound B on the maximum

number of steps.

In the case of abstract modelling the predicted policy values

show more volatility with respect to the values obtained by the

simulator. This is due to the fact that the f-reduced situation

graph Gf used by the policy predictor is only a model of the

situations and transitions used by the simulator. There are

several ramifications of this abstraction, which are illustrated

by considering how the w action is treated in a grid-based

simulation of BlocksWorld. The key decision for the

w-action is what the agent shall see afterwards. We decided

this as follows. A w-action moves the agent randomly to any

vacant cell in its (immediate) neighbourhood (comprising

eight cells, unless the agent is next to a grid boundary). The

agent then sees the surface if its new neighbourhood is entirely

vacant, but otherwise randomly sees any one tower in that

new neighbourhood. This decision fixes the probability

distribution over the possible w-transitions between the prior

situation and its successors. The policy predictor may

attempt to estimate these probabilities or may default them

to be equi-probable.

The above consideration shows that we must expect some

shortfall in the predictive power of the policy predictor

when applied to a position-sensitive world, and the question

is how serious (or not) that shortfall is. We simulated

Example 2.1 on a 6 � 6 grid with a bound B on the number

of steps increased to 200 to allow for more wandering. The

predicted optimal policies are the same as before, but with a

slightly reduced predicted value 30.47 (reduced precisely

because of the negative rewards of reflexive wanders).

However, they are not quite optimal among the observed

values. The observed optimal policy is a little different:

a! w; b! l; c! l; d! k; e! w;
f ! w; g! k; h! w; i! w

On seeing a 2-tower when not holding (perception e), it mar-

ginally favours w over k. Figure 9 shows the ranking chart, for

which QF ¼ 66.91%. Minor sampling variations among many

policies of similar value are the root cause of this reduced

value. If we contract F to just the 20 best policies then

QF ¼ 76.32%, so the predictive quality is rather better in

the region that matters.

The observed values in the chart are much lower than the

predicted ones, since the simulated agent is wandering (in

the sparse regions of the grid) much more than the prediction

considers probable. However, it is the relative rather than the

absolute values that are our main interest. The observed and

predicted success rates remain in close agreement, since

excess wandering does not alter the reachability of the goal,

but merely delays its discovery.

In predicting the policy values for the above grid-based

example we used only default probability distributions. The

volatility in Fig. 9 would have been reduced had we applied

better estimated probabilities. Rather than writing specific

software to make such estimates for a grid-based BlocksWorld,

we can more easily demonstrate here the scope for improve-

ment by exploiting results from the simulator. We made the

simulator count the number of times each arc in the

f-reduced SG was traversed (by a corresponding transition in

GW) in order to estimate the relative frequency of non-

deterministic arcs. These frequencies were used to better esti-

mate probabilities in the policy predictor. The results using

these better probability estimates for the best 18 policies of

Fig. 9, superimposed with the original results for the same

policies, are shown in Fig. 10, whose chart is significantly

smoother than the corresponding region of the chart in Fig. 9.

4. MULTIPLE AGENTS

In any TR-application there can be one or more agent types

with one or more agents of each type. Agents of the same

type are called clones. Whether or not it is useful to employ

multiple agents in the pursuit of a goal depends upon the

nature of the world and of the agents’ interactions with the

world and with each other. With limited perceptions, incogni-

zance of the goal and lack of communication, simple

TR-agents of the kind we have considered may cooperate

advantageously only by serendipity. Predicting accurately

the behaviour of multiple agents presents not only analytical

difficulties, in attempting to assess the overall impact of

their interactions, but also problems of scale—for just a

modest case of a 4-block world with two agents there are

potentially more than 13 000 policies to consider.

FIGURE 9. Observed policy values in Example 2.1 (abstract mode).

FIGURE 10. Improved observed policy values in Example 2.1

(abstract mode).

1198 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

This section considers how our framework can be adapted

to plan for a community of agents. In this paper we restrict

agents to be clones, that is to have identical policies. The fra-

mework is flexible enough to deal with applications in which

every agent has the same capabilities and follows the same

policy, through agents with the same capabilities but following

a different policy (for example by virtue of having differing

goals), to agents with different capabilities.

4.1. Exogenous actions

Our use of unrestricted situation graph G has so far assumed

just one agent. When dealing with several agents we again

use the situation graph representing the point of view of a

single archetypal agent called self. Every transition experi-

enced by the agent must have some corresponding arc in the

situation graph. When an agent is alone these transitions are

caused only by its own actions, but if other agents are

present then the transitions it experiences may be due to

their actions. A new action x for this kind of exogenous

activity is needed to label these other transitions. An x-arc is

interpreted as self waiting.

Such an arc may be drawn from any situation s1 to any other

s2 when we wish to entertain the possibility that another agent

effects the transition from s1 to s2. Therefore self’s action set

now contains x, which opens the possibility for a policy to pre-

scribe act x. If self’s policy prescribes action x when in situ-

ation s1 the effect is to make self wait, until and if its

perception is changed by some other agent.

When self’s policy prescribes some action other than x, self

may alternatively undergo an exogenous transition caused by

the action of another agent. We call this passive updating of self.

If an exogenous agent behaves unpredictably then, in

general, it is hard to obtain a significant predictive benefit.

By contrast, if this other agent is predictable—in particular,

is itself an agent with a known policy—then it can be exploited

to advantage in circumstances where self acting alone would

be inefficient in achieving the goal or be unable to reach the

goal at all. Our consideration of exogenous actions from

now on will therefore concentrate upon multiple-agent scen-

arios in which the policies of exogenous agents are either

known or are to be determined. Actions that arise from seren-

dipitous actions of the environment are not considered when

finding or evaluating policies. Such actions are, by their

nature, presumed rare and so their consequences will not

have a large impact on the policy values. However, if such

actions were more probable then they would perhaps be

better modelled by an explicit agent.

4.2. Policies for multiple agents

The key question we address in this section is whether a graph

focusing upon one agent enables prediction of good policies

for a group of agents without requiring explicit analysis of

all the combinations of the situations they occupy. First we

explain how such a graph is constructed and the role played

by the x-action. The notion of a TR-application is already

general enough to deal with multiple agents. If kO, P, A, Rl
is a TR-application, then all the agents in R will be clones

and have identical policies unless otherwise stated. The set

R can be represented by a positive integer indicating the

number of such cloned agents. The set A of action repertoires

will include both the wander and the wait actions.

The changes to unrestricted graphs to include the effects of

several agents are:

† the additional agents may affect the set of objective states

O, and possibly the perceptions P of self; however, since

these are dependent only upon the capabilities of a single

agent, it is less likely they will be affected, unless, for

example, the agents are themselves upgraded to be able

to perceive other agents. The change in O could be

larger; however, unless self needs to identify the other

agents by name, states can be described using implicit

anonymous references to those agents;

† from each situation there may be additional arcs for

exogenous actions by other agents that will affect the

situation of self. These additional arcs are labelled by x

and are interpreted from self’s point of view as a wait

action.

In BlocksWorld, for example, instead of requiring states that

describe self and three other agents holding a block, it may

be sufficient to record that self is holding a block and that

some other agent is also doing so. Which one, or how many,

may not be important. Already, this feature allows us to rep-

resent situations involving several agents compactly. For

instance, instead of the situation ([1, 2, 3], (s0, nh), (s3, h),

(s3, nh)), indicating seven blocks and three agents, two of

which are seeing the 3-tower whilst the third is seeing the

surface, it might be sufficient to represent the situation as

([1, 2, 3], (s3, nh)), assuming self is seeing the 3-tower. The

perceptions of the other two agents are not relevant to the

design of self’s policy except insofar as they may offer oppor-

tunities for self to be passively updated—for example, the

agent holding a block may place it on the 3-tower resulting

in self being passively updated to seeing a 4-tower.

The unrestricted graph formed for self will be called a self

graph, Gs, [13], which is a projection onto self of an implicit,

much larger graph, called the group graph, Gg. Gg represents

situations as described above, namely by a tuple including the

objective state and one perception for each agent. The relation

between Gg and Gs is formalized in Definition 4.1. Gg rep-

resents situations as described above, namely by a tuple

including the objective state and one perception for each

agent.

DEFINITION 4.1. Let Gg be a group graph for n agents, based

on the set Sg of situations of the form (o, p1, . . . , pn) and having

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1199

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

the set of transitions Tg. The self graph Gs is the graph for self¼

k obtained from Gg as follows. The situations of Gs are projec-

tions of those in Gg and have the form (o, pk). The set of

transitions Ts in Gs is given by Ts ¼ f((o, pk), (o0, pk))g for

each transition (o, p1, . . . , pk, . . . , pn) to (o0, p01, . . . , p0k, . . . ,

p0n) in Gg. The action labelling a transition is x if the transition

is not due to the action of agent k, otherwise it is the action

taken by agent k.

The situations from which the self graph is constructed are

exactly those in which self could possibly find itself—in other

words those situations (o, p) which are consistent with all

those situations (o, p0) in which other agents could be, given

that the objective state is o and that self has a perception p.

Notice that the group graph would include many ‘equivalent’

situations. For example, the situation ([1, 2, 3], (s0, nh), (s3, h),

(s3, nh)) could occur in six different ways by permuting the

perceptions of each agent. Two of those permutations would

map to ([1, 2, 3], (s3, h)) and two more would map to ([1, 2,

3], (s0, nh)). Moreover, the self graph should include exactly

those transitions which self could make from any situation.

Transitions which are due to self taking an action a= x

appear also in Gs labelled by the same action a, whilst those

due to some other agent acting will appear in Gs as action x.

In the above example, if the policy were to pick when not

holding and seeing a 3-tower, there would be an x-arc from

([1, 2, 3], (s3, h)) to ([1, 2, 2], (s2, h)), corresponding to the

possibility of an agent other than self being in situation ([1,

2, 3], (s3, nh)) and performing the k action. This transition

corresponds to several transitions in the group graph: for

example, assuming self is the second agent, such transitions

would include ([1, 2, 3], (s3, nh), (s3, h), (s0, nh)) to ([1, 2,

2], (s2, h), (s2, h), (s0, nh)) and ([1, 2, 3], (s1, nh), (s3, h),

(s3, nh)) to ([1, 2, 2], (s1, nh), (s2, h), (s2, h)). If the perception

of self remains unchanged by such an action there is a reflexive

x-arc in the self graph.

An x-arc in the graph can thus represent two different

notions. On the one hand it indicates how self can be impacted

by the actions of others. On the other hand it may represent the

action of deliberate waiting in accordance with self’s own

policy. In this case the transitions still represent the impact

on self of the actions of others.

The group graph is never actually constructed. The presence

of x-arcs can be detected directly from the policy. To see what

this means, consider the situation ([1, 2, 3], (s3, nh)) and the

x-arc transition to ([1, 2, 2], (s2, nh)) taken from the above

example. This transition occurs as it is enabled by the

policy. That is, when self is in situation ([1, 2, 3], (s3, nh))

there could be another agent in a situation which, according

to the policy, will cause self to move to ([1,2,2],(s2,nh)). In

this case, assuming the policy is to pick when seeing a

3-tower, the transition is enabled since another agent could

be in the situation ([1,2,3],(s3,nh)). Notice that there are also

some group situations when this transition could not occur,

for instance, if neither of the other agents was seeing the

3-tower. If the policy prescribes a different action for percep-

tion (s3,nh) then the transition to ([1,2,2],(s2,nh)) could not

occur, for in order to remove the top block of the 3-tower an

agent would have to be seeing (s3,nh)) and the policy should

choose the k action. But that is not so in this case and the

x-arc would not be present.

The number of policies that need to be considered is some-

what larger for agent communities than for a single agent, due

to the extra possibility of the x action. For instance, for

Example 2.1 there were 256 possible policies, whereas if

there are two agents there are more than 13 000 policies. In

practice, most of those policies have low value. This raises

the general problem of economically identifying low-value

policies. We can apply various heuristic filters to this

problem; for example, an intuitive filter removes those

policies which afford poor prospects of reaching the goal.

Another filter might remove policies which present the poten-

tial for deadlock. As with all heuristics these filters are fallible,

in that they may be expensive to compute and may reject some

worthwhile policies.

We will now illustrate some of the issues involved using a

multi-agent version of the ‘deadlock filter’, which we call the

clone consistency principle and is defined in Definition 4.2.

This is a useful filter since it not only reduces the possibility

for deadlock, but also reduces very significantly the number

of policies requiring to be examined. The clone consistency

principle seeks to eliminate policies with the following pathol-

ogy. The policy chooses x for some perception and in some

situation s ¼ (o, p) there are no x-arcs enabled by the policy

other than a reflexive arc. In this case an agent in situation s

will necessarily wait forever. All other agents would also

necessarily be in state o, but possibly with perceptions differ-

ent from p. Because self has no enabled x-arcs, no actions

made by other agents can change the state, so all agents are

locked into state o. If they had the same perception as self

then deadlock would ensue. For instance, in the 7-block

example above, if the action on seeing a 1-tower and not

holding is x, then self must wait in the situation ([1, 1, 1, 2,

2], (s1, nh)). If all other agents also happen to be seeing

1-towers, then all would have to perform wait and there

would be deadlock. However, this situation is not necessarily

deadlocked since some agents could, on the other hand, be

seeing a 2-tower and perhaps the action in that case is k,

giving rise to an x-arc to the situation ([1, 1, 1, 1, 2], (s1,

nh)). Although self would still perform x, the action prescribed

for the agent other (now having perception (s1, h)) may be to

wander and place the held block on the 1-tower being

observed by self, in which case self ’s perception would

change to (s2, nh) and it would be able to perform k.

In what follows a valid group, also called a multi-situation,

is a set of situations f(o1, p1), . . . , (on, pn)g derived from the

situation (o, p1, . . . , pn) in the group graph. In other words, a

multi-situation is a physically possible assignment of the

1200 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

agents to situations that share a common state and differ (if at

all) only in perceptions.

DEFINITION 4.2. Let f be a policy containing the rule p! x.

Then the clone consistency principle requires that, for each

situation (o, p), there is a non-reflexive x-arc to a state o0,

Gf
s must have an arc from (o, q) to (o0,q0), f must contain q

! a, a= x and the situations (o, p) and (o, q) must belong

to a valid group.

EXAMPLE 4.1. For the examples in the remainder of this

section and in the next section we use a different world scen-

ario, consisting of planks and two or more cloned agents. A

plank may be held at either end by one agent or at both ends

by two different agents. In the latter case it can be disposed

of using the dispose action, denoted by di, which reduces

the number of planks by 1. Agents may otherwise wander,

or lift or drop one end of a plank. If only one end of a

plank is being held and the agent holding it attempts a

dispose action, then that action will leave the agent’s situ-

ation unchanged.

The states, perceptions and actions we use to model such a

world containing two planks and two agents are shown in

Fig. 11. Each state is represented by a tuple [r, t, f], where r

is the number of (raised) planks held at both ends, t the

number of (tilted) planks held only at one end and f the

number of (flat) planks held at neither end. Each agent may

perceive whether it sees an unheld end (su), a held end (sh)

or no end (s0), and whether it is holding an end or not.2 This

model is an abstraction of Planks World as represented in

the simulator, in that it contains no detail concerning which

ends of which planks are perceived by the agents. The pre-

sumed goal is the situation (0, a) in which there are no

planks and all agents are therefore neither seeing nor

holding any plank.

Each A(p) set now contains the exogenous action x. The

graph G has 16 situations and there are 36 possible policies,

of which just 20 are clone-consistent. It is shown in Fig. 12.

Notice particularly the x-arc from situation (7, f), which corre-

sponds to the passive update of self when another clone

initiates a di action.

Consider a clone r1 governed by the policy

a! w; c! li; e! x; f ! dr

In the situation (5, e) there is one flat plank and one tilted

plank and r1 is not holding but is seeing the held end. For

this perception the policy requires that r1 shall wait. In due

course another agent r2 holding the held end might effect

the transition from (5, e) to (4, c), that is, might drop that

end. From r2s point of view, this is a transition from (5, f)

to (4, c), requiring a drop action. The clone consistency

principle states that the policy requires f! dr.

The best policy for the stated goal is

a! w; c! li; e! w; f ! di

This policy happens not to require any agent to wait. On

the other hand, a suboptimal policy that does require

waiting, such as

a! x; c! li; e! w; f ! di

can be both clone-consistent and yet admit deadlock. It admits

deadlock because both agents may be in (1, a). It is clone con-

sistent because, in every situation an agent may occupy, some

other agent could act so as to change the former’s situation.

For instance, if one agent is in (1, a) then the other agent

may be in (1, c) and would perform a li action causing the

former agent to change its situation to (2, a).

FIGURE 11. States, perceptions and actions (Example 4.1).

FIGURE 12. Unrestricted situation graph (Example 4.1).2It is assumed that if an agent is holding an end then it can see a held end.

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1201

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

4.3. Changes to the policy predictor

The policy predictor estimates the probability distribution of

non-deterministic transitions in the single agent case. In the

multiple agent case it must also estimate the probability distri-

bution for x-arcs, which will depend in part on the number of

additional agents that are to effect those transitions.

When there are n . 1 agents, the predictor assigns probabil-

ities to the arcs of the graph Gf as follows. Each node s ¼ (o, p)

has emergent arcs for the action a that self performs according

to the rule p! a in its policy f. In the case that a= x the

emergent arcs from s comprise both a-arcs and x-arcs

(denoting passive updating). The normalized relative probabil-

ities of the a-arcs from sare either estimated or defaulted as

equi-probable. The normalized relative probabilities of the

x-arcs from s are likewise determined.

The absolute probability distribution at s is then computed by

multiplying the relative probability of each a-arc by 1/n and

multiplying the relative probability of each x-arc by (n 2 1)/n.

Consequently, if Sx and Sa denote the sums of the absolute

probabilities of the x-arcs and of the a-arcs, respectively,

their relationship is that Sx þ Sa ¼ 1 (to renormalize) and

Sx ¼ (n 2 1)Sa. The latter reflects the supposition that it is

(n 2 1) times more probable that any agent will be passively

updated (by some other agent acting) than that it will itself

act. This matches the behaviour of our serialized simulator

which, in each step, randomly chooses one agent to act and

then passively updates the other (n 2 1) agents.

Accurate estimation of x-arc probabilities would be achiev-

able in principle by exhaustive analysis of the complete group

graph. However, the very purpose of the self graph is to

obviate explicit construction of the group graph. In our own

studies we have estimated x-arc probabilities in only a

limited fashion by forming the groups explicitly and using

them to make approximate counts of the potential transitions

between them.

As an illustration, suppose in Example 4.1 that the chosen

policy is

a! x; c! li; e! w; f ! di

There are then three x-arcs emanating from situation (5, f),

one to (7, f), one to (6, f), due, respectively, to a second agent

being in (5, c) and either lifting the same plank as self or the

other plank, and one reflexive x-arc dueto the second agent

wandering (from (5, e)), or proactively (i.e. according to the

policy) waiting (from (5, a)). The probability on the di arc

from (5, f) would be computed to have a value of 0.5, whilst

the probabilities on each of the non-reflexive x-arcs would

be 1/8, whilst that on the reflexive x-arc is 1/4.

4.4. Changes to the simulator

In this section the operation of the simulator in a multi-agent

environment is described. In this context the simulator effects

transitions between the multi-situations used in the group graph.

A single run of the simulator begins with the agents

assigned to some chosen multi-situation s in Gg and, as with

the single agent case, if s corresponds to several simulated

multi-situations then one of those is chosen randomly. Follow-

ing this initialization the simulator executes steps until either

the goal is reached (by some agent), or the simulation depth

bound B is reached, when the run terminates. The value of

the run is calculated in the same way as for the single agent

case. Execution of a step involves several operations

(i) an agent is randomly selected as the one to act;

(ii) this agent performs the action prescribed by the policy

and its own situation is accordingly updated;

(iii) the situations of all other agents are appropriately

passively updated.

If the action performed in (ii) is a pro-active wait (x-action),

the step merely leaves all agents unaltered.

For example, a step from the multi-situation (4, c, c) in

Example 4.1 might be: r1 is selected, its policy (say) dictates

action li, and the new multi-situation would be either (5, c, f)

or (5, f, e), depending on whether r2 is seeing the same end

that r1 has just lifted or not. The situation change for r2 in

this transition is an example of a passive update corresponding

to an x-arc from either (4, c) to (5, c) or from (4, c) to (5, e).

The simulator’s successive random choosing of which

agent acts next provides an adequate approximation to the

more realistic scenario in which they would all be acting

concurrently. Owing to the physical constraint that there can

be only one world state at any instant, any set of concurrent

actions that produced that state can be serialized in one

way or another to achieve the same outcome. The simulator’s

randomness effectively covers all such possible serializations.

As in the single agent case, the simulator can take advantage

of recognizing when a particular multi-situation is in the group

trough, provided the group graph is feasible to explore.

5. COMMUNICATING AGENTS

The extension of the framework to allow several agents oper-

ating at once has so far excluded any communication between

them. If non-communicating agents appear to cooperate in

achieving a task then this is merely a fortituitous manifestation

of emergent behaviour, which we call ‘as-if’ co-operation. In

this section we show how deliberate (planned) cooperation can

be obtained by enabling agents to communicate. We avoid the

need to devise special languages and protocols for this by

restricting the communicable elements to be perceptions of

the kind already employed. If there is an atomic perception

p then we can allow self to have the atomic perception kp

1202 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

(representing ‘knows’ p), whose meaning is that one or more

other agents are perceiving, and communicating to self, that

p is true. We assume that the content of p is instantly transmis-

sible from those other agents to self by some suitable broad-

casting mechanism. With this provision in place, policy

formation for ri can then take account of what it receives

from other agents in addition to its own direct perceptions of

the world.

Consider again the two-plank two-agent problem of

Example 4.1. Neither agent can perceive what the other is

seeing, and so cannot distinguish between states 6 and 7

when holding one end of a plank. This means the dispose

action is liable to be unsuccessful. Adding additional agents,

but maintaining their limited perception, increases the

chance of success when attempting a dispose action.

Some of the unsuccessful dispose attempts can be avoided

if some communication between agents is allowed.

We can allow for agents to communicate to each other, in a

limited way, by giving them certain useful percepts of the

same form as those self could have. In this example, we

choose to let an agent perceive whether no other agent is

holding a plank end (knh), or whether at least one other

agent is doing so (kh).

EXAMPLE 5.1. This example extends Example 4.1 in two

ways: (i) by allowing communicated perceptions, and (ii) by

allowing either two or three cloned agents. The particular

states and perceptions for this formulation for two agents are

given in Fig. 13. The self-restricted graph Gf for two agents

and the policy

a! x; b! w; c! li; d! li; e! w;

f ! x; g! di

is shown in Fig. 14. Note that reflexive x-arcs are omitted to

avoid clutter.

In case there are three agents, the unrestricted graph has an

additional state, namely 8 ¼ [1, 1, 0], i.e. the case in which one

plank is raised and the second tilted, and nine extra situations,

namely (3, b), (3, e), (6, b), (6, d), (6, e), (7, b), (7, d), (7, e) and

(8, g) and numerous additional x-arcs. The simulator was run

for the problems of disposing of two planks with either two or

three agents. The particular policy illustrated in Fig. 14 was

ranked by the predictor as second for both the 2-agent case

and the 3-agent case. The simulator ranked the policy, respect-

ively, as fourth and third.

More significantly, the observed (simulated) values of the

policy were, respectively, 18.33 and 30.55. Informally, the

policy is to wait, rather than wander, except when there is

a chance some agent may be holding the other end of a

plank, in which case the policy is to wander. If the agent

finds itself holding an end, it waits for another agent to lift

the remaining end, ready for a dispose action. When there

are more agents this policy has a better chance of success,

hence the higher observed value (30.55) for three agents.

The charts for the two-agent and three-agent case are shown

in Figs 15 and 16, respectively.

For non-communicating agents, the closest policy to that in

Fig. 14 is

a! x; c! li; e! w; f ! di

which is now shown for two agents in Fig. 17. This offers few

situations the opportunity to reach the goal and has a poor

observed policy value 8.70. By contrast, the use of communi-

cation as reflected in Fig. 14 confers upon many more nodes

the possibility of reaching the goal and has a correspondingly

higher observed policy value, as noted earlier, of 18.33. The

FIGURE 13. States, perceptions and actions (Example 5.1).

FIGURE 14. Policy graph Gc for 2 agents (Example 5.1).

FIGURE 15. Policy chart for two agents (Example 5.1).

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1203

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

communication has allowed self to distinguish between situ-

ations 1a and 2b and consequently to form a different action

for the two situations, leading to an improved policy.

Using communication in this manner is semantically equiv-

alent to the alternative of simply increasing the ability of an

agent to perceive by its own means more of the state.

Viewed in this way, we could have cast the new perceptions

a: (s0, nh, knh) and b: (s0, nh, kh) as

a : ðs0; nh; nh1Þ and b : ðs0; nh; h1Þ

where h1 and nh1 stand, respectively, for the other agent is, or

is not, holding, on the assumption that an agent was physically

equipped to know what the other agent was holding. In engin-

eering terms, however, it is more practical to broadcast per-

ceptions through one uniform technology than to equip

agents with a diverse range of sensors. For more than one

agent this approach introduces more complex perceptions,

including disjunctions, so although the two views are equival-

ent, we prefer the one we interpret as communication.

Both the self-graphs of Examples 4.1 and 5.1 demonstrate

an incoherence effect due to the presence of x-arcs. A path

may exist using certain x-arcs, each of its corresponding

transitions being possible, but the group structure of agents

required for the first transition does not lead to the group struc-

ture necessary for the next transition. We call this phenom-

enon group incoherence. For instance, in Example 5.1 and

for two agents, consider the policy

a! x; b! w; c! li; d! li; e! x;

f ! dr; g! di

and the apparent path through Gf from (2, e) to (0, a) via (1, c),

(2, f) and (3, g) taking actions by self of x, li, x, di. Assume

self is agent r1 and the other agent is r2. In situation (2, e) r1 is

looking at a held end that it is not itself holding. It would enter

(1, c) if r2 could drop the end whilst being in (2, f). r2 would

then enter situation (1, c) as well, both agents seeing the

same end of the plank. r1 would then lift the end and move

to situation (2, f), while r2 would be passively updated to

(2, e). It is clear there is no way for r1 to get to (3, g), for

this would require r2 to lift the other end of the plank to the

one r1 is holding. This would require r2 to be in situation

(2, d) rather than (2, e).

There does not seem to be any easy way to avoid the effects

on policy values due to group incoherence when present,

although the use of communication means that agents can be

more aware of others and be able to distinguish between

apparently identical world states, as was illustrated for

Examples 4.1 and 5.1 discussed earlier. An analysis of the

relation between a group graph and a corresponding self

graph is given in [13].

In future work we will investigate a modification to the

Bellman formula of Definition 3 which, for a given policy f,

makes the value of a situation in the self graph not only

depend upon the expected reward of its successor situations,

but also take into account its predecessor situations. In particu-

lar, when a successor situation s0 of a situation s occurs via an

x-arc the modification will consider whether, given a prede-

cessor situation b of s, another agent could be in a perception

to effect the x-arc.

That is, assuming self is agent 1 and s ¼ (o, p1), s0 ¼ (o0, p01)

and b ¼ (c, d1), if the group graph would have had arcs from

some multi- situation (c, d1, . . . , dk) to (o0, p01, . . . , p0k) via (o,

p1, . . . , pk), whether the second arc projects onto the x-arc in

the self graph, and the first projects onto some arc in the self

graph from situation b to situation s. If this is the case, then a

more reliable estimate of the probability distribution from s to

its successors can be made and the value of the policy f obtained

using the self graph will be better predictor of the value of

policy f. This is similar to an improvement described in [14].

FIGURE 16. Policy chart for three agents (Example 5.1).

FIGURE 17. Policy graph for two (non-communicating) agents

(Example 4.1).

1204 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

6. MEMORY AND PERCEPTION

In this section we explore the idea of interpreting memory as a

percept. We illustrate this by considering the star-finding

problem taken from [22].

EXAMPLE 6.1. The problem concerns an agent that can move

left or right through a linear sequence of four cells to look for a

star which is always in the same place, in this case at cell

3. The set of states ¼f1, 2, 3, 4g and each perception is mod-

elled as a triple [o, a1, a2], where o is either ‘e(mpty)’ or

‘s(tar)’ and a1 and a2 are the two most recent actions, either

‘move left’ (L) or ‘move right’(R). In this representation the

first element o is the agent’s observation and the remaining

elements constitute a memory of several past actions.

If the agent’s behaviour is to stop when it sees the star and

stay put when attempting to move left(right) from cell 1(4)

then the predicted optimal policy is

½e;L;L� ! R; ½e;L;R� ! R; ½e;R; L� ! L;

½e;R;R� ! L; ½s;�;�� ! stop

This is shown in Fig. 18 and corresponds to the policy in

[22]. Some situations shown in Fig. 18 are not reachable

from any other, e.g. (2,[e, L, R]), but they are included since

they might exogenously become the current situation

through corruption of memory.

The optimal policy (for the star in cell 3) can be given an

algorithmic interpretation, which is ‘Move right until reaching

either the star or the right-hand cell, then move left until reach

the star’. If the star is closer to the left-hand cell the dual policy

that first moves left is better. If the position of the star is not

static, then either policy is the best. It is worth noting that

the calculation using the SGF is particularly simple since the

determinism of the actions obviates the need for probability

estimation.

This is a POMDP problem and so typically solved using

belief state estimation, as applied in [10, 22]. There, the

vector [0.25, 0, 0.5, 0.25], for instance, represents that the

agent believes it is more likely to be in state 3 than in state 1

or 4 and definitely is not in state 2. In order to obtain an

optimal policy using this representation an iterative algorithm

is used to find an approximation by computing V(b) ¼

maxa[A (r þ g� e), where r is the expected reward for action

a from belief state b and e is the estimated expected value of

successor states, using the current estimates. In [23] it was

shown that the optimal value function can be represented

using some finite set of vectors V, such that the value of a

node is computed as V(b) ¼ maxv[V b.v. In [10, 22] it is

shown how a policy can be found using this result.

Belief states in this context are essentially an encoding of

the past. As illustrated in Example 6.1 an alternative treatment

of memories is to interpret them as percepts. The method of

belief states clearly relies upon the assumption that the

world changes only under the actions of the agent. Otherwise,

there would be no reason why the agent should assume its

previous belief state is any guide to the recent past and

hence to the current world state. For example, if several

agents are acting then this assumption is not valid.

For multi-agent contexts our use of the self-oriented x-arc

appears simpler and more scaleable than the corresponding

‘decentralized’ POMDP approach of [24], which has to

analyse conjointly how all the agents are acting upon the world.

Due to exogenous actions an agent’s memory may not

reflect facts true of the current world. One way to recover

from such a case is to allow an agent to forget, which could

be modelled by arranging for an agent’s memory to revert to

some neutral value after a certain number of steps. For

example, in BlocksWorld an agent might remember the

height of the tallest tower it had seen, but such a memory

may be incorrect if that tower were built upon or dismantled

by another agent. If the memory reflected a true perception

of the world it is likely it would be reinforced by the agent

either seeing the tallest tower again or an even taller one.

Otherwise, the memory could be forgotten after a number of

steps, freeing the agent from believing incorrect facts of the

world. This is implicitly how noisy perceptions are dealt

with. If a wrong perception is made, an agent will soon

obtain another perception that will be correct, assuming that

the level of noise is not very great.

7. POSITIONING WITH RELATED WORK

In this Section we outline some ways in which the SGF differs

from some alternative methods of optimal policy determination.

The first contrast is with the work of those who seek to

design agents equipped with internal reasoning resources

such as knowledge bases, theorem-provers and planners [25]

and—in multi-agent contexts—communication mechanisms

[26]. Such facilities enable agents to reason about their

world, about their experiences and about the consequences

and merits of their possible courses of action and interaction.

It is intuitive that, armed with such powerful capabilities, they

should be generally more successful in achieving their goalsFIGURE 18. Gf for optimal policy of Example 6.1.

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1205

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

than primitive agents able only to map perceptions directly to

actions. The price potentially paid for this, however, lies in the

physical complexity of the hardware required to accommodate

and operate those facilities. As indicated in Section 1, our own

wish is to minimize that requirement in order to serve those

application contexts where such minimality may be physically

imperative.

In particular, we can differentiate our framework from that

of deliberative agents as follows. A deliberative agent gener-

ally follows a sense-think-act cycle [27]. During the ‘think’

part of the cycle the agent will evaluate what it has sensed

together with its previous beliefs and, if necessary, update

those beliefs and propose an action based on those updated

beliefs. The so-called BDI deliberative agents [28] have

more structure, in that in addition to beliefs B they have a

current goal D and an intention I which is essentially its

current plan to achieve D. To our knowledge the deliberation

activity does not usually quantify over the whole space of pol-

icies, but rather attempts only to find the best policy with

respect to the current beliefs.

In our framework, the ‘think’ part of the cycle is carried out

off-line. It takes a goal and a situation graph model and finds

from them the policy Pbest that has the best discounted-reward

estimate averaged over all start situations. This policy is at

least as good as the following, intuitively appealing, policy

Pgood: from the current perception cp assume that the best

policy from any state consistent with cp has first action cpa

and choose cpa as the next action, then continue in the

same way.

Notice that for each observed perception p the policy Pgood

will always pick the same action pa, as long as the agent

cannot distinguish which of several possible situations that

all have perception p it is actually in. Therefore, Pgood is one

of the policies considered in our framework for finding Pbest.

In fact, Pbest must be at least as good as Pgood, since if it

were not, then for some situations S and percepts pS for

which Pbest and Pgood differed, the value of Pbest would not

be optimal, counter to assumption.

The differences in approach between policy finding in

the SGF and for deliberating agents (DA) can be briefly sum-

marized as: (i) the evaluation of policies is made off-line in

SGF and on-line in DA, and (ii) the DA can take into

account more structured beliefs. However, as we showed in

Sections 5 and 6, SG can take into account communication

between agents and memory by giving agents enhanced

perceptions, which to some extent overcomes the limitations

of basic agents.

The second contrast is with the work of those who seek to

optimize relatively simple agents, comparable with our own,

by the use of POMDPs where the agents cannot perceive the

entirety of the state [10, 22, 24]. Both cases ultimately

desire the agent to determine its next action on the basis of

its current perception. Both the POMDP and situation graph

design frameworks acknowledge the relevance of state to

this decision. However, POMDP considers state during the

design process in terms of beliefs about the state. The

outcome is a policy that is represented by a tree whose

nodes and arcs are, respectively, labelled by actions and per-

ceptions. As a result, the action that an agent takes for a

given perception depends on where it is in the tree. This, com-

bined with standard techniques of mathematical programming,

yields algorithms capable of identifying tree-structured pol-

icies that are optimal or near-optimal relative to one’s ability

to estimate probabilities given the agent’s assumed powers

of state observation.

The SGF uses complete knowledge of the state in its design

process and the outcome is that an agent decides its next action

on the basis of perception alone. Policies of the latter kind

have been termed memoryless to signify that their use does

not entail remembering past actions [18, 29].

For both frameworks, the more the state becomes directly

observable, the more they take on the character of an MDP.

The POMDP methods become complicated to apply,

however, in the multi-agent context where the updating of

each agent’s beliefs has to consider the combinatorial

impact of the other agents’ actions upon the state. These com-

plications become compounded further if the agents are

having to survive in a world potentially impacted by unpre-

dictable exogenous events. These are the kinds of context

for which we wish to design our agents. We have presented

evidence that in those contexts our method, whilst by no

means perfect in its predictive accuracy or free from its own

complexity concerns, is nonetheless comparatively simple to

apply and yields reasonably good policies for the given goals.

The third contrast is with the particular species of TR-agents

envisaged by Nilsson in [1, 3]. Nilsson’s policy structure

differs from ours in that its rules are assumed to be ordered,

which lays the basis for his so-called regression property.

This requires that the effect of any rule p! a shall be to

cause the condition of some earlier rule in order to become sat-

isfied and that p shall be weaker (i.e. implied by) the condition

of any other rule having that same effect. Additionally, these

arrangements must lead ultimately to the achievement of the

goal. Nilsson’s design process therefore relies on assuming

that states—in particular the goal state—are totally observ-

able. In this architecture the content and ordering of the

rules constituting the desired policy can then be inferred by

a reductive planning process that constructs and orders rules

in such a way that the operation of each one may suitably

enable the operation of others, the whole intended to ensure

that the goal state eventually becomes achievable.

The regression property combines considerations that are

unrelated to one another—the capacity of rules to enable the

conditions of other rules, and the significance of rule ordering.

In our framework the disposition of rules to become enabled

and of their actions to promote progress towards the goal is

not enforced a priori, but is instead expected to emerge only

as a natural outcome of the design process. Moreover, our

1206 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

treatment attaches no goal-related significance to rule order-

ing. Indeed, the ordering of rules is immaterial if perceptions

are pairwise mutually exclusive. For us, the only benefit of

rule ordering is that it caters for the suppression within any

rule of those perceptual conjuncts known, by default, to be sat-

isfied by virtue of some earlier rule having not been enabled

with their logical complements satisfied. It is, therefore,

merely the analogue of the default ‘negation-by-failure’ rule

employed to confer programming economy in formalisms

like Prolog. Altogether, our view is that the regression prop-

erty is overly restrictive as an a priori constraint upon agent

design.

A further consequence of Nilsson’s agents’ greater percipi-

ence is that it favours the use of hierarchical policies in which

actions can themselves be policies with sub-goals. Whenever a

policy is executed as an action, in order for it to have any

effect under normal circumstances the perception that trig-

gered it must be knowable by the agent long enough to

achieve the policy’s subgoal. For example, in his BlocksWorld

there might be a rule clear(A)! makeclear(A) where make-

clear(A) is a parametrized call to another policy. Since

Nilsson does not require his agent to be observing a tower in

order to know that its top block (say A) is not clear, the

agent can busy itself in removing blocks from above A for

as long as it is known that A is not clear. On the other hand,

the ability only to perceive direct percepts, as generally

assumed in our framework, means that in many, if not most

cases an action is likely to falsify the condition of the rule

that triggered it.

The fourth contrast is with those methods [20, 31–33] that

rely upon learning, that is, upon training agents to perform

well in simulated environments. Here the evolving experience

of the agent is effectively translated into merit-oriented weight-

ings of the alternative actions available to each perception. The

outcome is typically a non-deterministic policy allowing the

agent to choose, for its current perception, between alternative

actions according to the weightings, which may be interpreted

as the relative probabilities of those actions being the best to

perform. Among the methods used for learning such policies

is inductive logic programming, employed to determine—by

a combination of logical inference and quantitative support—

advantageous associations between actions and their conse-

quences upon the state,as far as perceptual observability

permits [2, 34]. All such methods differ from our own in their

reliance upon a training regime and, usually, in the structure

of the policies they produce. Like POMDPs they can be very

successful, although it is not yet clear how their overall com-

plexity compares with that of POMDPs or with that of our

own framework employing just a static model of the agent’s

possible behaviours.

8. EXTENSIONS TO THE FRAMEWORK
AND FURTHER INVESTIGATIONS

In this paper we have restricted policies to be functions. That

is, each perception is associated with exactly one action. This

is in contrast to relational (or stochastic) policies, in which a

perception may be associated with more than one action and

the agent chooses between them according to some probability

distribution. We have also assumed that all agents in a group

follow the same policy. However, our framework does not

rule out either the possibility of relational policies or the mod-

elling of a group of non-homogeneous agents. Some prelimi-

nary experiments show that a relational policy which

linearly combines two or more functional policies can be

better than any of the functional policies and that two agents

following different policies may complement each other. In

particular, we will explore the following. First, we shall con-

sider groups of non-homogeneous functional agents having

differing capabilities and/or perceptions. For this we would

like to discover principles for evaluating the efficacy of

these co-implemented non-cloned agents. Secondly, we shall

apply the framework to relational policies in the expectation

that it will entail no significant changes to the framework.

Our focus on simple agents containing only a functional

policy is motivated partly by anticipation of application

domains demanding minimal agent hardware and partly by

the desire to explore agent capability incrementally, starting

with the simplest architectures. A policy of the kind we have

considered can be viewed as a compiled consequence of

some theory Th about the behaviour of the agent. If made

explicit, Th would either be embedded within the agent or

else be deployed only externally in the design process. In the

former case the agent would possess sufficient on-board proces-

sing capability to accommodate Th and to elicit, using some

internal reasoning system, the consequences of Th needed to

determine the run-time behaviour. This is the general nature

of an autonomous cognitive agent. Our future work will

examine how our design framework can deal with progressive

enhancements to the assumed agent architecture, such as

bounded memory, subgoal-reduction, relational mapping of

percepts to actions and other cognition-related extensions.

Finally, mechanisms by which an agent may learn to

improve its policy are more suited to finding relational policies

since the linear coefficients may be estimated in standard ways

(for example using an artificial neural network and back-

propagation). An investigation of such adaptive agents is an

exciting area for future work.

9. CONCLUSIONS

In Section 1 we stated that one of our aims in this paper was to

dissect the various issues involved in policy optimization for

minimal agents capable only of partially observing situations

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1207

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

and under functional restrictions. This dissection has contrib-

uted to the development of the SGF.

We conclude by restating the other main contributions: first,

two new branch and bound type algorithms for improving the

search for optimal policies; second, our method of accommo-

dating exogenous behaviour, including multi-agent inter-

action, solely through the special x-action and its associated

clone-consistency principle and an empirical demonstration

of its predictive merits and third, our method of supporting

inter-agent communication solely through suitable enrichment

of perceptions.

All of these provisions extend substantially the power of

the framework without requiring any extension of the

agents’ basic structure or any additional mechanisms for

their implementation.

ACKNOWLEDGEMENTS

The authors are grateful to Michael Cook for the Java programs,

which he wrote during his undergraduate summer placement

in 2007 while supported by an EPSRC student bursary. They

also thank the anonymous referees for their helpful comments.

REFERENCES

[1] Nilsson, N.J. (1994) Teleo-Reactive Programs for Agent

Control. J. Artif. Intell. Res., 1, 139–158.

[2] Benson, S. (1995) Inductive Learning of Reactive Action

Models. Proc. 12th Int. Conf. Machine Learning, Tahoe City,

California, pp. 47–54.

[3] Nilsson, N.J. (2001) Teleo-Reactive Programs and the Triple-

Tower Architecture. Electron. Trans. Artif. Intell., 5, 99–110.

[4] Broda, K., Hogger, C.J. and Watson, S. (2000) Constructing

Teleo-Reactive Robot Programs. Proc. 14th European Conf.

Artificial Intelligence (ECAI-2000), Berlin, pp. 653–657.

[5] Brooks, R.A. (1991) Intelligence without Reason. Proc. 12th

Int. Joint Conf. Artificial Intelligence (IJCAI-91), Sydney,

Australia, pp. 569–595.

[6] Kowalski, R.A. and Sadri, F. (1999) From logic programming

to multi-agent systems. Ann. Math. Artif. Intell., 25, 391–419.

[7] Fok, C.-L., Roman, G.-C. and Lu, C. (2006) Agilla A Mobile

Agent Middleware for Sensor Networks, Washington

University in St. Louis, Technical Report WUCSE-2006-16.

[8] Marsh, D., Tynan, R., O’Kane, D. and O’Hare, G.M.P. (2004)

Autonomic Wireless Sensor Networks. Eng. Appl. Artif.

Intell., 17, 741–748.

[9] Wooldridge, M.J. (2000) Reasoning About Rational Agents.

MIT press.

[10] Kaelbling, L.P., Littman, M.L. and Cassandra, A.R. (1998)

Planning and acting in partially observable stochastic

domains. Artif. Intell., 101, 99–134.

[11] Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning:

An Introduction. MIT Press.

[12] Sabbadin, R. (2002) Graph Partitioning Techniques for Markov

Decision Processes Decomposition. Proc. 15th European Conf.

Artificial Intelligence, Lyon, France, pp. 670–674.

[13] Broda, K. and Hogger, C.J. (2005) Abstract Policy Evaluation

for Reactive Agents. SARA-05, 6th Symp. Abstraction,

Reformulation and Approximation, Springer, LNAI 3607,

Edinburgh, UK, pp. 44–59.

[14] Broda, K. and Hogger, C.J. (2007) Abstraction as a Tool for

Multi-Agent Policy Evaluation. ASAMI’07, Symp. Artificial

Societies for Ambient Intelligence, Proc. AISB’07, Newcastle,

UK, pp. 20–26.

[15] Broda, K. and Hogger, C.J. (2005) Determining and verifying

good policies for cloned teleo-reactive agents. Comput. Syst.

Sci. Eng. CSSE, 20, 249–258.

[16] Chades, I., Scherrer, B. and Charpillet, F. (2003) Planning

Cooperative Homogeneous Multiagent Systems Using

Markov Decision Processes. Proc. 5th Int. Conf. Enterprise

Information Systems (ICEIS 2003), pp. 426–429.

[17] Guestrin, C., Lagoudakis, M. and Parr, R. (2002) Coordinated

Reinforcement Learning. Proc. 19th Int. Conf. Machine

Learning, ICML-02, Sydney, Australia, pp. 227–234.

[18] Littman, M.L. (1994) Memoryless Policies: Theoretical

Limitations and Practical Results. Proc. 3rd Int. Conf.

Simulation of Adaptive Behaviour, MIT Press, pp. 297–305.

[19] Loch, J. and Singh, S. (1998) Using Eligibility Traces to find the

Best Memoryless Policy in Partially Observable Markov

Decision Processes. Proc. 15th Int. Conf. Machine Learning,

pp. 323–331.

[20] Mitchell, T. (1997) Machine Learning, McGraw Hill.

[21] Snedecor, G.W. and Cochran, W.G. (1972) Statistical Methods.

Iowa State University Press.

[22] Cassandra, A.R., Kaelbling, L.P. and Littman, M. (1994) Acting

Optimally in Partially Observable Stochastic Domains. Proc.

12th National Conf. AI (AAAI-94), Seattle, USA, pp. 183–188.

[23] Sondik, E.J. (1978) The optimal control of partially observable

Markov processes over the infinite horizon: discounted costs.

Oper. Res., 26, 282–304.

[24] Nair, R., Tambe, M., Yokoo, M., Pynadath, D. and Marsella, M.

(2003) Taming Decentralised POMDPs: Towards Efficient

Policy Computation for Multiagent Settings. Proc. 18th Int.

Joint Conf. Artificial Intelligence (IJCAI-03), Acapulco,

Mexico, pp. 705–711.

[25] Kowalski, R.A., Sadri, F. and Toni, F. (1998) An Agent

Architecture that Combines Backward and Forward

Reasoning. CADE-15 Workshop on Strategies in Automated

Deduction, Lindau, Germany, pp. 49–56.

[26] Clark, K.L. and McCabe, F.G. (2004) Go!—A multi-paradigm

programming language for implementing multi-threaded

agents. Ann. Math. Artif. Intell., 41 171–206.

[27] Pfeifer, R. and Scheier, C. (1999) Understanding Intelligence.

MIT Press.

[28] Rao, A.S. and Georgeff, M.P. (1992) An Abstract Architecture

for Rational Agents. Proc. 3rd Int. Conf. Principles of

Knowledge Representation and Reasoning, Cambridge,

Massachusetts, pp. 439–449.

1208 K. BRODA and C. J. HOGGER

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

[29] Singh, S., Jaakkola, T. and Jordan, M.I. (1994) Learning

Without State-Estimation in Partially Observable Markovian

Decision Processes. Proc. 11th Int. Conf. Machine Learning,

New Brunswick, New Jersey, USA, pp. 284–293.

[30] Kersting, K., Van Otterlo, M. and de Raedt, L. (2004) Bellman

goes Relational. Proc. 21st Int. Conf. Machine Learning, Banff,

Canada, pp. 465–472 ACM.

[31] Dickens, L. (2004) Learning through exploration, MSc

Dissertation, Department of Computing, Imperial College.

[32] Kochenderfer, M. (2003) Evolving Hierarchical and Recursive

Teleo-Reactive Programs Through Genetic Programming.

EuroGP 2003, LNCS 2610, Essex, UK, pp. 83–92.

[33] Ryan, M.R.K. and Pendrith, M.D. (1998) An Architecture for

Modularity and Re-Use in Reinforcement Learning. Proc.

15th Int. Conf. Machine Learning, Madison, Wisconsin, USA,

pp. 481–487.

[34] Benson, S. and Nilsson, N.J. (1995) Reacting, Planning and

Learning in an Autonomous Agent. Furukawa, K., Michie, D.

and Muggleton, S. (eds.), Machine Intelligence 14, Clarendon

Press, Oxford.

APPENDIX

The finite horizon formula given in Definition 3.2 can be com-

puted iteratively using the appropriate transition and reward

matrices, where Psu is an entry in the probability matrix P
and Ysu is an entry in the reward matrix Y. For a given

policy f, its value is given by

Vðs; f ; kÞ ¼ Su[SSðg� Psu � Vðu; f ; k � 1ÞÞ

þ Su[SSðPsu � YsuÞ

The inner product term Su[SS (Psu � Ysu) ¼ kPs
.YslT is also

called the reward from s. The value matrix V(f, k) can be com-

puted iteratively from the n-ary vector V(f,0) ¼ [0, . . . , 0]T,

where n is the number of situations in the f-restricted graph,

and the formula

Vð f ; kÞ ¼ gP� Vð f ; k � 1Þ þ kP � YlT

in which kP.YlT is the n-dimensional vector of inner products

kPs
.Ysl. Because the value of kP.YlT is a constant, here

denoted by C, iterative expansion yields

Vð f ; iÞ ¼ ðgi�1Pi�1 þ � � � þ gPþ IÞC

which converges for 0 , g, 1. In the limit, as k tends to 1,

V(f, k) tends to V(f)¼ (I 2 gP)21C, or V(f) ¼ gP � V(f) þ C.

Therefore

Vðs; f Þ ¼ Su[SSðgPsu � Vð f ÞuÞ þ Su[SSðPsu � YsuÞ

which is the same as the formula for V(s, f) given in

Definition 3.1.

The rate of convergence of V(f, k) to V(f) depends upon

the value of g and to a lesser extent upon the topology of

the graph Gf.

DESIGNING EFFECTIVE POLICIES FOR MINIMAL AGENTS 1209

THE COMPUTER JOURNAL, Vol. 53 No. 8, 2010

 at Im
perial C

ollege L
ondon L

ibrary on January 15, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	Designing Effective Policies for™Minimal Agents
	INTRODUCTION
	Motivation
	The problem
	Overview of the framework

	BASIC ASPECTS OF FORMULATION
	Situations
	Situation graphs

	POLICY EVALUATION FOR SINGLE AGENTS
	Policy prediction
	Iterative branch and bound IBB
	Fixed stratification branch and bound (FSBB)
	Experimental validation
	Modelling principles

	Predictive quality

	MULTIPLE AGENTS
	Exogenous actions
	Policies for multiple agents
	Changes to the policy predictor
	Changes to the simulator

	COMMUNICATING AGENTS
	MEMORY AND PERCEPTION
	POSITIONING WITH RELATED WORK
	EXTENSIONS TO THE FRAMEWORK AND™FURTHER INVESTIGATIONS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX

