22 research outputs found
A deletion in GDF7 is associated with a heritable forebrain commissural malformation concurrent with ventriculomegaly and interhemispheric cysts in cats
Publisher Copyright: © 2020 by the authors.An inherited neurologic syndrome in a family of mixed-breed Oriental cats has been characterized as forebrain commissural malformation, concurrent with ventriculomegaly and interhemispheric cysts. However, the genetic basis for this autosomal recessive syndrome in cats is unknown. Forty-three cats were genotyped on the Illumina Infinium Feline 63K iSelect DNA Array and used for analyses. Genome-wide association studies, including a sib-transmission disequilibrium test and a case-control association analysis, and homozygosity mapping, identified a critical region on cat chromosome A3. Short-read whole genome sequencing was completed for a cat trio segregating with the syndrome. A homozygous 7 bp deletion in growth differentiation factor 7 (GDF7) (c.221_227delGCCGCGC [p.Arg74Profs]) was identified in affected cats, by comparison to the 99 Lives Cat variant dataset, validated using Sanger sequencing and genotyped by fragment analyses. This variant was not identified in 192 unaffected cats in the 99 Lives dataset. The variant segregated concordantly in an extended pedigree. In mice, GDF7 mRNA is expressed within the roof plate when commissural axons initiate ventrally-directed growth. This finding emphasized the importance of GDF7 in the neurodevelopmental process in the mammalian brain. A genetic test can be developed for use by cat breeders to eradicate this variant.Peer reviewe
Werewolf, there wolf : Variants in hairless associated with hypotrichia and roaning in the lykoi cat breed
Publisher Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland.A variety of cat breeds have been developed via novelty selection on aesthetic, dermatological traits, such as coat colors and fur types. A recently developed breed, the lykoi (a.k.a. werewolf cat), was bred from cats with a sparse hair coat with roaning, implying full color and all white hairs. The lykoi phenotype is a form of hypotrichia, presenting as a significant reduction in the average numbers of follicles per hair follicle group as compared to domestic shorthair cats, a mild to severe perifollicular to mural lymphocytic infiltration in 77% of observed hair follicle groups, and the follicles are often miniaturized, dilated, and dysplastic. Whole genome sequencing was conducted on a single lykoi cat that was a cross between two independently ascertained lineages. Comparison to the 99 Lives dataset of 194 non‐lykoi cats suggested two variants in the cat homolog for Hairless (HR) (HR lysine demethylase and nuclear receptor corepressor) as candidate causal gene variants. The lykoi cat was a compound heterozygote for two loss of function variants in HR, an exon 3 c.1255_1256dupGT (chrB1:36040783), which should produce a stop codon at amino acid 420 (p.Gln420Serfs*100) and, an exon 18 c.3389insGACA (chrB1:36051555), which should produce a stop codon at amino acid position 1130 (p.Ser1130Argfs*29). Ascertainment of 14 additional cats from founder lineages from Canada, France and different areas of the USA identified four additional loss of function HR variants likely causing the highly similar phenotypic hair coat across the diverse cats. The novel variants in HR for cat hypotrichia can now be established between minor differences in the phenotypic presentations.Peer reviewe
Peripheral Protein Adsorption to Lipid-Water Interfaces: The Free Area Theory
In fluid monolayers approaching collapse, phospholipids and their complexes with diacylglycerols hinder adsorption to the monolayer of the amphipathic protein, colipase. Herein, a statistical, free-area model, analogous to that used to analyze two-dimensional lipid diffusion, is developed to describe regulation by lipids of the initial rate of protein adsorption from the bulk aqueous phase to the lipid-water interface. It is successfully applied to rate data for colipase adsorption to phospholipid alone and yields realistic values of the two model parameters; the phospholipid excluded area and the critical free surface area required to initiate adsorption. The model is further developed and applied to analyze colipase adsorption rates to mixed monolayers of phospholipid and phospholipid-diacylglycerol complexes. The results are consistent with complexes being stably associated over the physiologically relevant range of lipid packing densities and being randomly distributed with uncomplexed phospholipid molecules. Thus, complexes should form in fluid regions of cellular membranes at sites of diacylglycerol generation. If so, by analogy with the behavior of colipase, increasing diacylglycerol may not trigger translocation of some amphipathic peripheral proteins until its abundance locally exceeds its mole fraction in complexes with membrane phospholipids