125 research outputs found

    Experimental characterization and automatic identification of stridulatory sounds inside wood

    Get PDF
    The propagation of animal vocalizations in water and in air is a well-studied phenomenon, but sound produced by bark and wood-boring insects, which feed and reproduce inside trees, is poorly understood. Often being confined to the dark and chemically saturated habitat of wood, many bark-and woodborers have developed stridulatory mechanisms to communicate acoustically. Despite their ecological and economic importance and the unusual medium used for acoustic communication, very little is known about sound production in these insects, or their acoustic interactions inside trees. Here, we use bark beetles (Scolytinae) as a model system to study the effects of wooden tissue on the propagation of insect stridulations and propose algorithms for their automatic identification. We characterize distance dependence of the spectral parameters of stridulatory sounds, propose data-based models for the power decay of the stridulations in both outer and inner bark, provide optimal spectral ranges for stridulation detectability and develop automatic methods for their detection and identification. We also discuss the acoustic discernibility of species cohabitating the same log. The species tested can be acoustically identified with 99% of accuracy at distances up to 20 cm and detected to the greatest extent in the 2-6 kHz frequency band. Phloem was a better medium for sound transmission than bark

    Habitat filtering by landscape and local forest composition in native and exotic New Zealand birds : Habitat filtering in New Zealand birds

    Get PDF
    Untangling the relative influences of environmental filtering and biotic interactions on species coexistence at various spatial scales is a long-held issue in community ecology. Separating these processes is especially important to understand the influences of introduced exotic species on the composition of native communities. For this aim, we investigated coexistence patterns in New Zealand exotic and native birds along multiple-scale habitat gradients. We built a Bayesian hierarchical model, contrasting the abundance variations of 10 native and exotic species in 501 point counts spread along landscape and local-scale gradients of forest structure and composition. Although native and exotic species both occurred in a wide range of habitats, they were separated by landscape-level variables. Exotic species were most abundant in exotic conifer plantations embedded in farmland matrices, while native birds predominated in areas dominated by continuous native forest. In exotic plantation forests, and to a lesser extent in native forests, locally co-occurring exotic and native species were segregated along a gradient of vegetation height. These results support the prediction that exotic and native bird species are segregated along gradients related to anthropogenic disturbance and habitat availability. In addition, native and exotic species overlapped little in a multivariate functional space based on 10 life history traits associated with habitat selection. Hence, habitat segregation patterns were probably mediated more by environmental filtering processes than by competition at landscape and local scales

    Common pathways by which non-native forest insects move internationally and domestically

    Get PDF
    International trade and movement of people are largely responsible for increasing numbers of non-native insect introductions to new environments. For forest insects, trade in live plants and transport of wood packaging material (WPM) are considered the most important pathways facilitating long-distance invasions. These two pathways as well as trade in firewood, logs, and processed wood are commonly associated with insect infestations, while “hitchhiking” insects can be moved on cargo, in the conveyances used for transport (e.g., containers, ships), or associated with international movement of passengers and mail. Once established in a new country, insects can spread domestically through all of the above pathways. Considerable national and international efforts have been made in recent years to reduce the risk of international movement of plant pests. International Standards for Phytosanitary Measures (ISPMs) No. 15 (WPM), 36 (plants for planting), and 39 (wood) are examples of phytosanitary standards that have been adopted by the International Plant Protection Convention to reduce risks of invasions of forest pests. The implementation of ISPMs by exporting countries is expected to reduce the arrival rate and establishments of new forest pests. However, many challenges remain to reduce pest transportation through international trade, given the ever-increasing volume of traded goods, variations in quarantine procedures between countries, and rapid changes in distribution networks. It is therefore likely that many more human-assisted invasions of forest insects will take place. New geographic expansions by natural modes are also made possible due to changes in host distribution and/or climate.http://link.springer.com/journal/103402020-01-01hj2018Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    Three alien bark and ambrosia beetles (Coleoptera, Curculionidae, Scolytinae) new to Switzerland

    Get PDF
    Identifying alien species is important to ensure the early detection of biological invasions and survey shifts in species distributions in the context of global change. Here, we report on three alien bark and ambrosia beetles newly detected in Switzerland: Cyclorhipidion distinguendum (Eggers, 1930), C. pelliculosum (Eichhoff, 1878), and Hypothenemus eruditus (Westwood, 1834). These species were recorded for the first time during a comprehensive survey of saproxylic beetles accross major forest types and along an altitudinal gradient during the entire growing season in the southern Alps, in the canton of Ticino. Their local abundance and number of occurrences accross different lowland forest habitats, including alluvial forests of national importance, indicates that all three species are already naturalized. Given their polyphagy, it is likely that all three species will become more extensively distributed across Switzerland, with a yet unknown environmental impact

    Invasion disharmony in the global biogeography of native and non‐native beetle species

    Get PDF
    International audienceAim The concept of "island disharmony" has been widely applied to describe the systematic over- and under-representation of taxa on islands compared to mainland regions. Here, we explore an extension of that concept to biological invasions. We compare biogeographical patterns in native and non-native beetle (Coleoptera) assemblages from around the world to test whether beetle invasions represent a random sample of species or whether some families are more prone to invade than others. Location Global. Methods Numbers of non-native beetle species established in ten regions worldwide were compared with the land area of each region. The distribution of species among families was compared with the distribution among families for all species native to the same region and with the distribution among families for the global pool of all known beetle species. Ordination analysis was used to characterize differences among native and non-native assemblages based upon the distribution of species among families. Results We report a total of 1,967 non-native beetle species across all ten regions, and a classic log-log relationship between numbers of species per region and land area though relationships are generally stronger for native assemblages. Some families (e.g., Dermestidae and Bostrichidae) are over-represented and others (e.g., Carabidae, Scarabaeidae and Buprestidae) are under-represented in non-native assemblages. The distribution of species among families is generally similar among native assemblages with greatest similarities among nearby regions. In contrast, non-native species assemblages are more similar to each other than to native species assemblages. Main conclusions Certain families are over-represented, and others are under-represented in non-native beetle assemblages compared to native assemblages, indicating "invasion disharmony" in the global representation of beetle families. Similarities in composition among non-native assemblages may reflect unobserved associations with invasion pathways and life-history traits that shape invasion success of different insect groups

    Fewer non‐native insects in freshwater than in terrestrial habitats across continents

    Full text link
    Aim Biological invasions are a major threat to biodiversity in aquatic and terrestrial habitats. Insects represent an important group of species in freshwater and terrestrial habitats, and they constitute a large proportion of non-native species. However, while many non-native insects are known from terrestrial ecosystems, they appear to be less represented in freshwater habitats. Comparisons between freshwater and terrestrial habitats of invader richness relative to native species richness are scarce, which hinders syntheses of invasion processes. Here, we used data from three regions on different continents to determine whether non-native insects are indeed under-represented in freshwater compared with terrestrial assemblages. Location Europe, North America, New Zealand. Methods We compiled a comprehensive inventory of native and non-native insect species established in freshwater and terrestrial habitats of the three study regions. We then contrasted the richness of non-native and native species among freshwater and terrestrial insects for all insect orders in each region. Using binomial regression, we analysed the proportions of non-native species in freshwater and terrestrial habitats. Marine insect species were excluded from our analysis, and insects in low-salinity brackish water were considered as freshwater insects. Results In most insect orders living in freshwater, non-native species were under-represented, while they were over-represented in a number of terrestrial orders. This pattern occurred in purely aquatic orders and in orders with both freshwater and terrestrial species. Overall, the proportion of non-native species was significantly lower in freshwater than in terrestrial species. Main conclusions Despite the numerical and ecological importance of insects among all non-native species, non-native insect species are surprisingly rare in freshwater habitats. This is consistent across the three investigated regions. We review hypotheses concerning species traits and invasion pathways that are most likely to explain these patterns. Our findings contribute to a growing appreciation of drivers and impacts of biological invasions

    Effectiveness of the International Phytosanitary Standard ISPM No. 15 on Reducing Wood Borer Infestation Rates in Wood Packaging Material Entering the United States

    Get PDF
    Numerous bark- and wood-infesting insects have been introduced to new countries by international trade where some have caused severe environmental and economic damage. Wood packaging material (WPM), such as pallets, is one of the high risk pathways for the introduction of wood pests. International recognition of this risk resulted in adoption of International Standards for Phytosanitary Measures No. 15 (ISPM15) in 2002, which provides treatment standards for WPM used in international trade. ISPM15 was originally developed by members of the International Plant Protection Convention to “practically eliminate” the risk of international transport of most bark and wood pests via WPM. The United States (US) implemented ISPM15 in three phases during 2005–2006. We compared pest interception rates of WPM inspected at US ports before and after US implementation of ISPM15 using the US Department of Agriculture AQIM (Agriculture Quarantine Inspection Monitoring) database. Analyses of records from 2003–2009 indicated that WPM infestation rates declined 36–52% following ISPM15 implementation, with results varying in statistical significance depending on the selected starting parameters. Power analyses of the AQIM data indicated there was at least a 95% chance of detecting a statistically significant reduction in infestation rates if they dropped by 90% post-ISPM15, but the probability fell as the impact of ISPM15 lessened. We discuss several factors that could have reduced the apparent impact of ISPM15 on lowering WPM infestation levels, and suggest ways that ISPM15 could be improved. The paucity of international interception data impeded our ability to conduct more thorough analyses of the impact of ISPM15, and demonstrates the need for well-planned sampling programs before and after implementation of major phytosanitary policies so that their effectiveness can be assessed. We also present summary data for bark- and wood-boring insects intercepted on WPM at US ports during 1984–2008

    Fewer non-native insects in freshwater than in terrestrial habitats across continents

    Get PDF
    Aim: Biological invasions are a major threat to biodiversity in aquatic and terrestrial habitats. Insects represent an important group of species in freshwater and terrestrial habitats, and they constitute a large proportion of non-native species. However, while many non-native insects are known from terrestrial ecosystems, they appear to be less represented in freshwater habitats. Comparisons between freshwater and terrestrial habitats of invader richness relative to native species richness are scarce, which hinders syntheses of invasion processes. Here, we used data from three regions on different continents to determine whether non-native insects are indeed under-represented in freshwater compared with terrestrial assemblages. Location: Europe, North America, New Zealand. Methods: We compiled a comprehensive inventory of native and non-native insect species established in freshwater and terrestrial habitats of the three study regions. We then contrasted the richness of non-native and native species among freshwater and terrestrial insects for all insect orders in each region. Using binomial regression, we analysed the proportions of non-native species in freshwater and terrestrial habitats. Marine insect species were excluded from our analysis, and insects in low-salinity brackish water were considered as freshwater insects. Results: In most insect orders living in freshwater, non-native species were under-represented, while they were over-represented in a number of terrestrial orders. This pattern occurred in purely aquatic orders and in orders with both freshwater and terrestrial species. Overall, the proportion of non-native species was significantly lower in freshwater than in terrestrial species. Main conclusions: Despite the numerical and ecological importance of insects among all non-native species, non-native insect species are surprisingly rare in freshwater habitats. This is consistent across the three investigated regions. We review hypotheses concerning species traits and invasion pathways that are most likely to explain these patterns. Our findings contribute to a growing appreciation of drivers and impacts of biological invasions
    corecore