1,794 research outputs found

    Two-loop Functional Renormalization Group of the Random Field and Random Anisotropy O(N) Models

    Full text link
    We study by the perturbative Functional Renormalization Group (FRG) the Random Field and Random Anisotropy O(N) models near d=4d=4, the lower critical dimension of ferromagnetism. The long-distance physics is controlled by zero-temperature fixed points at which the renormalized effective action is nonanalytic. We obtain the beta functions at 2-loop order, showing that despite the nonanalytic character of the renormalized effective action, the theory is perturbatively renormalizable at this order. The physical results obtained at 2-loop level, most notably concerning the breakdown of dimensional reduction at the critical point and the stability of quasi-long range order in d<4d<4, are shown to fit into the picture predicted by our recent non-perturbative FRG approach.Comment: 19 pages, 20 figures. Minor correction

    DNA electrophoresis in designed channels

    Full text link
    We present a simple description on the electrophoretic dynamics of polyelectrolytes going through designed channels with narrow constrictions of slit geometry. By analyzing rheological behaviours of the stuck chain, which is coupled to the effect of solvent flow, three critical electric fields (permeation field E(per)∼N−1E^{(per)} \sim N^{-1}, deformation field E(def)∼N−3/5E^{(def)} \sim N^{-3/5} and injection field E(inj)≃N0E^{(inj)} \simeq N^0, with NN polymerization index) are clarified. Between E(per)E^{(per)} and E(inj)E^{(inj)}, the chain migration is dictated by the driven activation process. In particular, at E>E(def)E>E^{(def)}, the stuck chain at the slit entrance is strongly deformed, which enhances the rate of the permeation. From these observations, electrophoretic mobility at a given electric field is deduced, which shows non-monotonic dependence on NN. For long enough chains, mobility increases with NN, in good agreement with experiments. An abrupt change in the electrophoretic flow at a threshold electric field is formally regarded as a nonequilibrium phase transition.Comment: 11 pages, 8 figure

    Interfacial layering in a three-component polymer system

    Full text link
    We study theoretically the temporal evolution and the spatial structure of the interface between two polymer melts involving three different species (A, A* and B). The first melt is composed of two different polymer species A and A* which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The second melt is made of a pure polymer B which is strongly attracted to species A (chi_AB 0). We then show that, due to these contradictory tendencies, interesting properties arise during the evolution of the interface after the melts are put into contact: as diffusion proceeds, the interface structures into several adjacent "compartments", or layers, of differing chemical compositions, and in addition, the central mixing layer grows in a very asymmetric fashion. Such unusual behaviour might lead to interesting mechanical properties, and demonstrates on a specific case the potential richness of multi-component polymer interfaces (as compared to conventional two-component interfaces) for various applications.Comment: Revised version, to appear in Macromolecule

    Straightening of Thermal Fluctuations in Semi-Flexible Polymers by Applied Tension

    Get PDF
    We investigate the propagation of a suddenly applied tension along a thermally excited semi-flexible polymer using analytical approximations, scaling arguments and numerical simulation. This problem is inherently non-linear. We find sub-diffusive propagation with a dynamical exponent of 1/4. By generalizing the internal elasticity, we show that tense strings exhibit qualitatively different tension profiles and propagation with an exponent of 1/2.Comment: Latex file; with three postscript figures; .ps available at http://dept.physics.upenn.edu/~nelson/pull.p

    Monomer dynamics of a wormlike chain

    Full text link
    We derive the stochastic equations of motion for a tracer that is tightly attached to a semiflexible polymer and confined or agitated by an externally controlled potential. The generalised Langevin equation, the power spectrum, and the mean-square displacement for the tracer dynamics are explicitly constructed from the microscopic equations of motion for a weakly bending wormlike chain by a systematic coarse-graining procedure. Our accurate analytical expressions should provide a convenient starting point for further theoretical developments and for the analysis of various single-molecule experiments and of protein shape fluctuations.Comment: 6 pages, 4 figure

    Behavior of a polymer chain in a critical binary solvent

    Full text link
    We present a field-theoretic renormalization group analysis of a polymer chain immersed in a binary good solvent close to its critical demixing point. We first show that this problem can be mapped on a bicritical field theory, i.e. a (Φ2)2(\Phi^{2})^{2}-model with a mass anisotropy. This implies that the end-to-end distance of the polymer is now controlled by a new critical exponent νB\nu_{B} related to the quadratic mass anisotropy operator BB. To show this we solve the RG equation and calculate explicitly the exponents and the mean end-to-end length of the chain.Comment: 6 pages, accepted in Europhys. Let

    Probing structural relaxation in complex fluids by critical fluctuations

    Full text link
    Complex fluids, such as polymer solutions and blends, colloids and gels, are of growing interest in fundamental and applied soft-condensed-matter science. A common feature of all such systems is the presence of a mesoscopic structural length scale intermediate between atomic and macroscopic scales. This mesoscopic structure of complex fluids is often fragile and sensitive to external perturbations. Complex fluids are frequently viscoelastic (showing a combination of viscous and elastic behaviour) with their dynamic response depending on the time and length scales. Recently, non-invasive methods to infer the rheological response of complex fluids have gained popularity through the technique of microrheology, where the diffusion of probe spheres in a viscoelastic fluid is monitored with the aid of light scattering or microscopy. Here we propose an alternative to traditional microrheology that does not require doping of probe particles in the fluid (which can sometimes drastically alter the molecular environment). Instead, our proposed method makes use of the phenomenon of "avoided crossing" between modes associated with the structural relaxation and critical fluctuations that are spontaneously generated in the system.Comment: 4 pages, 4 figure

    Viscoelastic Effect on Hydrodynamic Relaxation in Polymer Solutions

    Full text link
    The viscoelastic effect on the hydrodynamic relaxation in semidilute polymer solutions is investigated. From the linearized two-fluid model equations, we predict that the dynamical asymmetry coupling between the velocity fluctuations and the viscoelastic stress influences on the hydrodynamic relaxation process, resulting in a wave-number-dependent shear viscosity.Comment: 7pages; To be published in Journal of the Physical Society of Japan,Vol 72,No2,(2003

    One- and two-particle microrheology

    Full text link
    We study the dynamics of rigid spheres embedded in viscoelastic media and address two questions of importance to microrheology. First we calculate the complete response to an external force of a single bead in a homogeneous elastic network viscously coupled to an incompressible fluid. From this response function we find the frequency range where the standard assumptions of microrheology are valid. Second we study fluctuations when embedded spheres perturb the media around them and show that mutual fluctuations of two separated spheres provide a more accurate determination of the complex shear modulus than do the fluctuations of a single sphere.Comment: 4 pages, 1 figur
    • …
    corecore