90 research outputs found

    Regional differences of energetics, mechanics, and kinetics of myosin cross-bridge in human ureter smooth muscle

    Get PDF
    This study provides information about baseline mechanical properties of the entire muscle and the molecular contractile mechanism in human ureter smooth muscle and proposed to investigate if changes in mechanical motor performance in different regions of isolated human ureter are attributable to differences in myosin crossbridge interactions. Classic mechanical, contraction and energetic parameters derived from the tension-velocity relationship were studied in ureteral smooth muscle strips oriented longitudinally and circularly from abdominal and pelvic human ureter parts. By applying of Huxley’s mathematical model we calculated the total working crossbridge number per mm2 (Ψ), elementary force per single crossbridge (Π0), duration of maximum rate constant of crossbridge attachment 1/f1 and detachment 1/g2 and peak mechanical efficiency (Eff.max). Abdominal longitudinal smooth muscle strips exhibited significantly higher maximum isometric tension and faster maximum unloaded shortening velocity compared to pelvic ones. Contractile differences were associated with significantly higher crossbridge number per mm2. Abdominal longitudinal muscle strips showed a lower duration of maximum rate constant of crossbridge attachment and detachment and higher peak mechanical efficiency than pelvic ones. Such data suggest that the abdominal human ureter showed better mechanical motor performance mainly related to a higher crossbridge number and crossbridge kinetics differences. Such results were more evident in the longitudinal rather than in the circular layer

    STZ-diabetic rat heart maintains developed tension amplitude by increasing sarcomere length and crossbridge density

    Get PDF
    New Findings: What is the central question of this study? In the papillary muscle from type I diabetic rats, does diabetes-associated altered ventricular function result from changes of acto-myosin interactions and are these modifications attributable to a possible sarcomere rearrangement? What is the main finding and its importance? For the first time, we showed that type-I diabetes altered sarcomeric ultrastructure, as seen by transmission electron microscopy, consistent with physiological parameters. The diabetic condition induced slower timing parameters, which is compatible with a diastolic dysfunction. At the sarcomeric level, augmented β-myosin heavy chain content and increased sarcomere length and crossbridges' number preserve myocardial stroke and could concur to maintain the ejection fraction. Abstract: We investigated whether diabetes-associated altered ventricular function, in a type I diabetes animal model, results from a modification of acto-myosin interactions, through the in vitro recording of left papillary muscle mechanical parameters and examination of sarcomere morphology by transmission electron microscopy (TEM). Experiments were performed on streptozotocin-induced diabetic and age-matched control female Wistar rats. Mechanical isometric and isotonic indexes and timing parameters were determined. Using Huxley's equations, we calculated mechanics, kinetics and energetics of myosin crossbridges. Sarcomere length and A-band length were measured on TEM images. Type I and III collagen and β-myosin heavy chain (MHC) expression were determined by immunoblotting. No variation in resting and developed tension or maximum extent of shortening was evident between groups, but diabetic rats showed lower maximum shortening velocity and prolonged timing parameters. Compared to controls, diabetics also displayed a higher number of crossbridges with lower unitary force. Moreover, no change in type I and III collagen was associated to diabetes, but pathological rats showed a two-fold enhancement of β-MHC content and longer sarcomeres and A-band, detected by ultrastructural morphometry. Overall, these data address whether a preserved systolic function accompanied by an altered diastolic phase results from a recruitment of super-relaxed myosin heads or the phosphorylation of the regulatory light chain site in myosin. Although the early signs of diabetic cardiomyopathy were well expressed, the striking finding of our study was that, in diabetics, sarcomere modification may be a possible compensatory mechanism that preserves systolic function

    Chronic Red Bull Consumption during Adolescence: Effect on Mesocortical and Mesolimbic Dopamine Transmission and Cardiovascular System in Adult Rats

    Get PDF
    Energy drinks are very popular nonalcoholic beverages among adolescents and young adults for their stimulant effects. Our study aimed to investigate the effect of repeated intraoral Red Bull (RB) infusion on dopamine transmission in the nucleus accumbens shell and core and in the medial prefrontal cortex and on cardiac contractility in adult rats exposed to chronic RB consumption. Rats were subjected to 4 weeks of RB voluntary consumption from adolescence to adulthood. Monitoring of in vivo dopamine was carried out by brain microdialysis. In vitro cardiac contractility was studied on biomechanical properties of isolated left-ventricular papillary muscle. The main finding of the study was that, in treated animals, RB increased shell dopamine via a nonadaptive mechanism, a pattern similar to that of drugs of abuse. No changes in isometric and isotonic mechanical parameters were associated with chronic RB consumption. However, a prolonged time to peak tension and half-time of relaxation and a slower peak rate of tension fall were observed in RB-treated rats. It is likely that RB treatment affects left-ventricular papillary muscle contraction. The neurochemical results here obtained can explain the addictive properties of RB, while the cardiovascular investigation findings suggest a hidden papillary contractility impairment

    Haemolymphatic cancer among children in Sardinia, Italy: 1974-2003 incidence

    Get PDF
    Objectives To explore the time trend and geographical distribution of childhood leukaemia incidence over the territory of the Italian region of Sardinia. Setting All hospitals departments, diagnostic centres and social security agencies in Sardinia were regularly screened in 1974-2003 to identify, register and review the diagnoses of incident cases of haematological malignancies (HM). Participants The whole child population aged 0-14 resident in Sardinia. Primary and secondary outcome measures Incidence and time trend of childhood HM and childhood acute lymphoblastic leukaemia (ALL) over the study period, and use of Bayesian methods to plot the probability of areas with excess incidence on the regional map. Results Overall, 675 HM cases, including 378 ALL cases, occurred among children aged 0-14 years resident in Sardinia in 1974-2003, with an incidence rate of 6.97Ă—10-5 (95% CI 6.47 to 7.51) and 3.85Ă—10-5 (95% CI 3.48 to 4.26), respectively. Incidence of HM and ALL showed an upward trend along the study period especially among females. Three communes out of the 356 existing in 1974, namely Ittiri, Villa San Pietro and Carbonia, stand out as areas with excess incidence of HM and ALL in particular and another, Carloforte, for ALL only. Conclusions Our results might serve as convincing arguments for extending the coverage of routine cancer registration over the whole Sardinian population, while prompting further research on the genetic and environmental determinants in the areas at risk

    TGS1 mediates 2,2,7-trimethyl guanosine capping of the human telomerase RNA to direct telomerase dependent telomere maintenance

    Get PDF
    Pathways that direct the selection of the telomerase-dependent or recombination-based, alternative lengthening of telomere (ALT) maintenance pathway in cancer cells are poorly understood. Using human lung cancer cells and tumor organoids we show that formation of the 2,2,7-trimethylguanosine (TMG) cap structure at the human telomerase RNA 5′ end by the Trimethylguanosine Synthase 1 (TGS1) is central for recruiting telomerase to telomeres and engaging Cajal bodies in telomere maintenance. TGS1 depletion or inhibition by the natural nucleoside sinefungin impairs telomerase recruitment to telomeres leading to Exonuclease 1 mediated generation of telomere 3′ end protrusions that engage in RAD51-dependent, homology directed recombination and the activation of key features of the ALT pathway. This indicates a critical role for 2,2,7-TMG capping of the RNA component of human telomerase (hTR) in enforcing telomerase-dependent telomere maintenance to restrict the formation of telomeric substrates conductive to ALT. Our work introduces a targetable pathway of telomere maintenance that holds relevance for telomere-related diseases such as cancer and aging

    Histological study of timing and embryology of notochordal abnormalities in rat exposed in utero to Doxorubicin

    No full text
    Experimental Doxorubicin-exposure in utero is correlated with foetal oesophageal atresia, tracheooesophageal fistula, axial alterations. While gastrointestinal and respiratory defects have been larg e l y investigated, only sporadic data have been published to date on notochordal and vertebral defects. The aim of this work was the study of the genesis of chordal and vertebral abnormalities in rat embryos and foetuses exposed to Doxorubicin and the study of their correlation with oesophageal and tracheal defects. For this purpose, pregnant rats were i.p. injected with saline (control) or with 4mg/Kg b.w. Doxorubicin on days 9.5 and 10.5 of gestation. Embryos and foetuses were morphologically analysed on days 10.5-15 and 16, 18, 20 of gestation respectively, fixed in formaldehyde and histologically processed. Slides were routinely stained with haematoxylin-eosin (11-15 days post coitum embryos and all foetuses) or specifically stained with aniline blue for the staining of basal laminae (10.5 days post coitum embryos). Moreover, some foetuses at term (20 days post coitum) were processed for bone and cartilage staining. The data obtained in the present work confirm the specificity of Doxorubicin in inducing gastro-intestinal and tracheal defects, describe the genesis of these defects step by step, describe the type and the genesis of notochordal abnormalities and their fate and exclude the role of Doxorubicin in inducing axial skeletal malformations

    Pathogenic pathways in fluconazole-induced branchial arch malformations

    No full text
    BACKGROUND: A widely-used antimycotic agent, bis-triazole fluconazole (FLUCO), is able to produce abnormalities to the branchial apparatus (hypoplasia, agenesis, and fusion) in postimplantation rodent embryos cultured in vitro. The branchial apparatus is a complex and transient structure in vertebrate embryos and is essential for the development of the face skeleton. Branchial arch mesenchyme is formed by two different cellular populations: paraxial mesenchyme and ectomesenchyme, which originate from rhombencephalic neural crest cell (NCC) migration. We investigated the possible pathogenic pathways involved in FLUCO-related branchial arch abnormalities. Perturbations in physiological apoptosis, cell proliferation, NCC migration and branchial mesenchyme induction have been considered. METHODS: Rat embryos (9.5-day postcoitum; 1-3 somites) were exposed in vitro to 0 or 500 microM FLUCO. After 24, 36, or 48 hr of culture, embryos were examined for apoptosis (acridine orange method) and cell proliferation (BrdU incorporation and detection method). Rhombencephalic NCC migration was analyzed using immunostaining of NCC (using anti-CRABP antibodies) and the extracellular matrix (using anti-fibronectin antibodies). The differentiative capability of the branchial mesenchymes was investigated using anti-endothelin and anti-endothelin-receptor antibodies. RESULTS: During the whole culture period, no alterations in physiological apoptosis, cell proliferation, and mesenchymal cell induction were observed in FLUCO-exposed embryos in comparison to controls. On the contrary, severe alterations in NCC migration pathways were observed in FLUCO-exposed embryos. CONCLUSIONS: The findings suggest that FLUCO produces teratogenic effects by interfering with the cellular and molecular mechanisms that control NCC migration
    • …
    corecore