335 research outputs found

    Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

    Get PDF
    Abstract. The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008–2013. The results showed that including soil moisture observations in the event rainfall–runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha−1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process

    Application of a model-based rainfall-runoff database as efficient tool for flood risk management

    Get PDF
    A framework for a comprehensive synthetic rainfall-runoff database was developed to study catchment response to a variety of rainfall events. The framework supports effective flood risk assessment and management and implements simple approaches. It consists of three flexible components, a rainfall generator, a continuous rainfallrunoff model, and a database management system. The system was developed and tested at two gauged river sections along the upper Tiber River (central Italy). One of the main questions was to investigate how simple such approaches can be applied without impairing the quality of the results. The rainfall-runoff model was used to simulate runoff on the basis of a large number of rainfall events. The resulting rainfallrunoff database stores pre-simulated events classified on the basis of the rainfall amount, initial wetness conditions and initial discharge. The real-time operational forecasts follow an analogue method that does not need new model simulations. However, the forecasts are based on the simulation results available in the rainfall-runoff database (for the specific class to which the forecast belongs). Therefore, the database can be used as an effective tool to assess possible streamflow scenarios assuming different rainfall volumes for the following days. The application to the study site shows that magnitudes of real flood events were appropriately captured by the database. Further work should be dedicated to introduce a component for taking account of the actual temporal distribution of rainfall events into the stochastic rainfall generator and to the use of different rainfall-runoff models to enhance the usability of the proposed procedure

    A physically based approach for the estimation of root-zone soil moisture from surface measurements

    Get PDF
    Abstract. In the present work, we developed a new formulation for the estimation of the soil moisture in the root zone based on the measured value of soil moisture at the surface. It was derived from a simplified soil water balance equation for semiarid environments that provides a closed form of the relationship between the root zone and the surface soil moisture with a limited number of physically consistent parameters. The method sheds lights on the mentioned relationship with possible applications in the use of satellite remote sensing retrievals of soil moisture. The proposed approach was used on soil moisture measurements taken from the African Monsoon Multidisciplinary Analysis (AMMA) and the Soil Climate Analysis Network (SCAN) databases. The AMMA network was designed with the aim to monitor three so-called mesoscale sites (super sites) located in Benin, Mali, and Niger using point measurements at different locations. Thereafter the new formulation was tested on three additional stations of SCAN in the state of New Mexico (US). Both databases are ideal for the application of such method, because they provide a good description of the soil moisture dynamics at the surface and the root zone using probes installed at different depths. The model was first applied with parameters assigned based on the physical characteristics of several sites. These results highlighted the potential of the methodology, providing a good description of the root-zone soil moisture. In the second part of the paper, the model performances were compared with those of the well-known exponential filter. Results show that this new approach provides good performances after calibration with a set of parameters consistent with the physical characteristics of the investigated areas. The limited number of parameters and their physical interpretation makes the procedure appealing for further applications to other regions

    Decoration of nanovesicles with pH (low) insertion peptide (pHLIP) for targeted delivery

    Get PDF
    Acidity at surface of cancer cells is a hallmark of tumor microenvironments, which does not depend on tumor perfusion, thus it may serve as a general biomarker for targeting tumor cells. We used the pH (low) insertion peptide (pHLIP) for decoration of liposomes and niosomes. pHLIP senses pH at the surface of cancer cells and inserts into the membrane of targeted cells, and brings nanomaterial to close proximity of cellular membrane. DMPC liposomes and Tween 20 or Span 20 niosomes with and without pHLIP in their coating were fully characterized in order to obtain fundamental understanding on nanocarrier features and facilitate the rational design of acidity sensitive nanovectors. The samples stability over time and in presence of serum was demonstrated. The size, ζ-potential, and morphology of nanovectors, as well as their ability to entrap a hydrophilic probe and modulate its release were investigated. pHLIP decorated vesicles could be useful to obtain a prolonged (modified) release of biological active substances for targeting tumors and other acidic diseased tissues

    Model cell membrane interaction with a bioinspired amphoteric polymer

    Get PDF
    We present recent investigation by means of nanoscale techniques on biocompatible linear polyamidoamines with amphoteric character, namely AGMA1 and ARGO7. These polymers have been shown of extremely promising and already proved medical interest, comprising their strong protection actions against virus infection, mainly papilloma and herpes and the extremely low toxicity of their DNA complexes, with respect to other used polymers such as PEI and protamine, applied in nanovector design for gene delivery. Our studies focus on the most important of these polymers, AGMA1, a prevailingly cationic 4-aminobutylguanidine-deriving PAA, whose mechanism of action is so far not fully understood. The current understanding is that its interaction with cell surfaces by means of glycosaminoglycans (HSPG) has a major role in its protective action against viruses. Yet, AGMA1 is active also against HPV-31, whose attachment does not appear to be dependent on HSPG. HPV-31, whose attachment does not appear to be dependent on HSPG. Therefore, AGMA1 binds other (as yet unidentified) receptors on the cell surface. As the known recipient is the HS carbohydrate moiety, other sugars rich membrane components have been proposed as probable AGMA1 target. Therefore, to shed a light on the mechanism of interaction of the polymer with sugar containing biologically relevant molecules, not HS, we have investigated AGMA1 in interaction with glycophyngolipids, Specifically, we studied multicomponent symmetric vesicles enriched in ganglioside GM1 built to mimic biological membrane domains, in the presence of AGMA1, At physiological pH, electrostatic effects should be the relevant interactions between GM1 and AGMA1. Taking advantage of the same mechanism we investigated the possibility of building lipid based core-shell particles to vehiculate AGMA1/siRNA complexes. Moreover, since it is probable that AGMA1 interacts with the barrier of mucus which cover the involved tissue we have extended our investigations also to mucin, constituting the biological barrier to the target tissues of the medical application of the polymers

    Interaction of mucins with bioinspired polymers and drug delivery particles

    Get PDF
    Mucins are glycoproteins with high molecular weight and an abundance of negatively charged oligosaccharide side chains, representing the main components in the mucous gels apart from water. Mucin structure consists of a flexible backbone (mainly serine and threonine residues) which serves as anchoring points for oligosaccharide side chains, and hydrophobic \u201cnaked domains\u201d enriched in cysteine residues. The latter can form inter-molecular bonds via disulphide links, promoting mucin association in solution. Therefore, mucins can establish adhesive interactions with particulates/biomacromolecules via electrostatic interactions, van der Waals forces, hydrophobic forces, hydrogen bonding, or chain entanglement. Mucosal drug delivery vehicles can either penetrate rapidly or establish prolonged contact. However, their development is of great challenge because little is still known about the interactions between mucin and other macromolecules. We are currently working on a comprehensive study of the interaction between mucin and macromolecules of interest for pharmaceutical developments by complementary techniques. To this scope, we employ biocompatible natural and synthetic polymers with different physical-chemical characteristics. Among them, linear polyamidoamines with amphoteric character are particularly interesting for their cyto-biocompatibility. It is indeed crucial to characterise such interactions not only in the bulk but also at the interface, since complexation between mucins and biomacromolecules takes place close to the cell membrane surface. Moreover, the strategy to overcome mucus barrier and achieve long retention time in the cell surface is to develop nano-agents which can effectively penetrate the mucus layer and accumulate at the epithelial surface. In this framework we present preliminary investigations in the bulk by small angle x-ray scattering (SAXS) and at the solid-liquid interface by employing quartz crystal microbalance (QCM-D)

    Model cell membrane interaction with a bioinspired amphoteric polymer

    Get PDF
    We present recent investigation by means of nanoscale techniques on biocompatible linear polyamidoamines with amphoteric character, namely AGMA1 and ARGO7. These polymers have been shown of extremely promising and already proved medical interest, comprising their strong protection actions against virus infection, mainly papilloma and herpes and the extremely low toxicity of their DNA complexes, with respect to other used polymers such as PEI and protamine, applied in nanovector design for gene delivery. Our studies focus on the most important of these polymers, AGMA1, a prevailingly cationic 4-aminobutylguanidine-deriving PAA, whose mechanism of action is so far not fully understood. The current understanding is that its interaction with cell surfaces by means of glycosaminoglycans (HSPG) has a major role in its protective action against viruses. Yet, AGMA1 is active also against HPV-31, whose attachment does not appear to be dependent on HSPG. HPV-31, whose attachment does not appear to be dependent on HSPG. Therefore, AGMA1 binds other (as yet unidentified) receptors on the cell surface. As the known recipient is the HS carbohydrate moiety, other sugars rich membrane components have been proposed as probable AGMA1 target. Therefore, to shed a light on the mechanism of interaction of the polymer with sugar containing biologically relevant molecules, not HS, we have investigated AGMA1 in interaction with glycophyngolipids, Specifically, we studied multicomponent symmetric vesicles enriched in ganglioside GM1 built to mimic biological membrane domains, in the presence of AGMA1, At physiological pH, electrostatic effects should be the relevant interactions between GM1 and AGMA1. Taking advantage of the same mechanism we investigated the possibility of building lipid based core-shell particles to vehiculate AGMA1/siRNA complexes. Moreover, since it is probable that AGMA1 interacts with the barrier of mucus which cover the involved tissue we have extended our investigations also to mucin, constituting the biological barrier to the target tissues of the medical application of the polymers

    Toward the estimation of river discharge variations using MODIS data in ungauged basins

    Get PDF
    This study investigates the capability of the Moderate resolution Imaging Spectroradiometer (MODIS) to estimate river discharge, even for ungauged sites. Because of its frequent revisits (as little as every 3 h) and adequate spatial resolution (250 m), MODIS bands 1 and 2 have significant potential for mapping the extent of flooded areas and estimating river discharge even for medium-sized basins. Specifically, the different behaviour of water and land in the Near Infrared (NIR) portion of the electromagnetic spectrum is exploited by computing the ratio (C/M) of the MODIS channel 2 reflectance values between two pixels located within (M) and outside (C), but close to, the river. The values of C/M increase with the presence of water and, hence, with discharge. Moreover, in order to reduce the noise effects due to atmospheric contribution, an exponential smoothing filter is applied, thus obtaining C/M⁎. Time series of hourly mean flow velocity and discharge between 2005 and 2011 measured at four gauging stations located along the Po river (Northern Italy) are employed for testing the capability of C/M⁎ to estimate discharge/flow velocity. Specifically, the meanders and urban areas are considered the best locations for the position of the pixels M and C, respectively. Considering the optimal pixels, the agreement between C/M⁎ and discharge/flow velocity is fairly good with values in the range of 0.65–0.77. Additionally, the application to ungauged sites is tested by deriving a unique regional relationship between C/M⁎ and flow velocity valid for the whole Po river and providing only a slight deterioration of the performance. Finally, the sensitivity of the results to the selection of the C and M pixels is investigated by randomly changing their location. Also in this case, the agreement with in situ observations of velocity is fairly satisfactory (r ~ 0.6). The obtained results demonstrate the capability of MODIS to monitor discharge (and flow velocity). Therefore, its application for a larger number of sites worldwide will be the object of future studies

    Pathogenic Aβ A2V versus protective Aβ A2T mutation : early stage aggregation and membrane interaction

    Get PDF
    We investigated the effects of punctual A-to-V and A-to-T mutations in the amyloid precursor protein APP, corresponding to position 2 of A\u3b21\u201342. Those mutations had opposite effects on the onset and progression of Alzheimer disease, the former inducing early AD pathology and the latter protecting against the onset of the disease. We applied Static and Dynamic Light Scattering and Circular Dichroism, to study the different mutants in the early stages of the aggregation process, essential for the disease. Comparative results showed that the aggregation pathways differ in the kinetics and extent of the process, in the size of the aggregates and in the evolution of the secondary structure, resulting in fibrils of different morphology, as seen by AFM. Mutated peptides had comparable toxic effects on N2a cells. Moreover, as assessed by X-ray scattering, all of them displayed disordering effects on the internal structure of mixed phospholipids-gangliosides model membranes
    corecore