318 research outputs found

    Extraordinarily high leaf selenium to sulfur ratios define ā€˜se-accumulatorā€™ plants

    Get PDF
    Background and Aims: Selenium (Se) and sulfur (S) exhibit similar chemical properties. In flowering plants (angiosperms) selenate and sulfate are acquired and assimilated by common transport and metabolic pathways. It is hypothesized that most angiosperm species show little or no discrimination in the accumulation of Se and S in leaves when their roots are supplied a mixture of selenate and sulfate, but some, termed Se-accumulator plants, selectively accumulate Se in preference to S under these conditions. Methods: This paper surveys Se and S accumulation in leaves of 39 angiosperm species, chosen to represent the range of plant Se accumulation phenotypes, grown hydroponically under identical conditions. Results: The data show that, when supplied a mixture of selenate and sulfate: (1) plant species differ in both their leaf Se ([Se]leaf) and leaf S ([S]leaf) concentrations; (2) most angiosperms show little discrimination for the accumulation of Se and S in their leaves and, in non-accumulator plants, [Se]leaf and [S]leaf are highly correlated; (3) [Se]leaf in Se-accumulator plants is significantly greater than in other angiosperms, but [S]leaf, although high, is within the range expected for angiosperms in general; and (4) the Se/S quotient in leaves of Se-accumulator plants is significantly higher than in leaves of other angiosperms. Conclusion: The traits of extraordinarily high [Se]leaf and leaf Se/S quotients define the distinct elemental composition of Se-accumulator plants

    Soil and foliar zinc biofortification of broccolini: effects on plant growth and mineral accumulation

    Get PDF
    Ā© 2020 CSIRO. Millions of people have Zn-deficient diets, so Zn-biofortified crops could prevent such deficiency. The aim of this study was to evaluate the use of agronomic Zn biofortification of broccolini-a new hybrid crop variety derived from a cross between kalian cabbage and broccoli. Plants were grown in pots using a Zn deficient soil. Four fertiliser treatments were tested: (1) control (2) soil application of 5 mg ZnSO4ā€¢7H2O kg-1 soil (3) foliar application at the early flowering stage of 0.5% (w/v) ZnSO4ā€¢7H2O (4) combined soil and foliar treatments. Florets were harvested in four sequential harvests. There was a decrease in both growth and leaf composition of Zn, Ca, Fe and Mg. Soil Zn application increased floret production. There were increases in the Zn concentration stem+leaves and florets of 12- and 2.5-fold in foliar and soil+foliar treatments respectively. PA:Zn molar ratios decreased under both foliar and soil+foliar treatments. Boiling reduced Zn concentration by 40%, along with a decrease of other mineral nutrients. A soil+foliar treatment can increase both plant growth and Zn concentration in broccolini, and boiled 100 g portion of biofortified florets fertilised at rates in this study would deliver āˆ¼49 mg Zn, a 46% increase than in the non-biofortified broccolini

    Soil and foliar zinc application to biofortify broccoli (Brassica oleracea var. Italica L.): Effects on the zinc concentration and bioavailability

    Get PDF
    Ā© 2020, Czech Academy of Agricultural Sciences. All rights reserved. Agronomic zinc (Zn) biofortification of crops could help to alleviate dietary Zn deficiency, which is likely to affect more than one billion people worldwide. To evaluate the efficiency of agronomic Zn biofortification of broc-coli, four application treatments were tested: no Zn application (control); soil application of 5 mg/kg ZnSO4Ā·7 H2O (soil); two sprays (15 mL/pot each) of 0.25% (w/v) ZnSO4Ā·7 H2O (foliar); and soil + foliar combination. Soil Zn application increased Zn-DTPA (diethylenetriamine pentaacetic acid) concentration by 3.7-times but did not affect plant growth or plant Zn concentration. Foliar Zn application increased stem + leaves and floret Zn concentration by 78 and 23 mg Zn/kg, respectively, with good bioavailability based on phytic acid concentration. Boiling decreased mineral concentration by 19%, but increased bioavailability by decreasing the phytic acid concentration. The entire broccoli could constitute a good nutritional source for animals and humans. An intake of 100 g boiled florets treated with the foliar treatment will cover about 36% of recommended dietary intake (RDI) of Zn, together with 30% of Ca, 94% of K, 32% of Mg, 6% of Na, 55% of P, 60% of S, 10% of Cu, 22% of Fe, 43% of Mn, and 35% of Se RDIs

    The influence of style and origin on mineral composition of beers retailing in the UK

    Get PDF
    Beer has high nutritional values in terms of energy and is also a dietary source of antioxidants, carbohydrates and minerals among others. In Europe, 53 Mt of beer are produced annually, and with an average supply of 68.2 kg capitaā€¾Ā¹ yearā€¾Ā¹ among adults. In this study, the mineral composition of 125 commercial beer samples retailing in the UK, but originating from ten countries, was determined; such detailed information is lacking in UK food composition tables. Beer composition data are reported for Al, As, Ba, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr, U, V and Zn, following analysis by inductively coupled plasma mass spectrometry. ANOVA results showed higher concentrations of Mo, Pb and Sr (0.160; 491.70 Ɨ 10ā€¾āµ; 0.38 mg Lā€¾Ā¹, respectively) for stout/porter style and a significant higher amount of minerals such as Al (3.835 mg Lāˆ’1), Cd (8.64 Ɨ 10āˆ’5 mg Lā€¾Ā¹), Mn (1.02 mg Lā€¾Ā¹) or Ni (0.312 mg Lā€¾Ā¹) among others for lambic beer. Regarding the country of origin, higher Se concentrations were reported from beer brewed in the USA (0.110 mg Lā€¾Ā¹). It is concluded that beer style was determined to have a greater effect on beer mineral composition than origin or container type

    The snake family Psammophiidae (Reptilia: Serpentes): phylogenetics and species delimitation in the African sand snakes (Psammophis Boie, 1825) and allied genera

    Get PDF
    This study constitutes the first evolutionary investigation of the snake family Psammophiidaeā€”the most widespread, most clearly defined, yet perhaps the taxonomically most problematic of Africa's familylevel snake lineages. Little is known of psammophiid evolutionary relationships, and the type genus Psammophis is one of the largest and taxonomically most complex of the African snake genera. Our aims were to reconstruct psammophiid phylogenetic relationships and to improve characterisation of species boundaries in problematic Psammophis species complexes. We used approximately 2500 bases of DNA sequence from the mitochondrial and nuclear genomes, and 114 terminals covering all psammophiid genera and incorporating approximately 75% of recognised species and subspecies. Phylogenetic reconstructions were conducted primarily in a Bayesian framework and we used the Wiens/Penkrot protocol to aid species delimitation. Rhamphiophis is diphyletic, with Rhamphiophis acutus emerging sister to Psammophylax. Consequently we transfer the three subspecies of Rhamphiophis acutus to the genus Psammophylax. The monotypic genus Dipsina is sister to Psammophis. The two species of Dromophis occupy divergent positions deeply nested within Psammophis, and we therefore relegate Dromophis to the synonymy of Psammophis. Our results allow division of the taxonomically problematic Psammophis 'sibilans' species complex into two monophyletic entities, provisionally named the 'phillipsii' and 'subtaeniatus' complexes. Within these two clades we found support for the status of many existing species, but not for a distinction between P.p. phillipsii and P. mossambicus. Additionally, P. cf. phillipsii occidentalis deserves species status as the sister taxon of P. brevirostris

    Zinc fertilization increases productivity and grain nutritional quality of cowpea (Vigna unguiculata [L.] Walp.) under integrated soil fertility management

    Get PDF
    Cowpea (Vigna unguiculata [L.] Walp.) is an important but under-studied grain legume which can potentially contribute to improved dietary zinc (Zn) intake in sub-Saharan Africa. In this study, surveys were conducted on smallholder farms in Zimbabwe during 2014/15 to determine the influence of diverse soil fertility management options on cowpea grain productivity and nutrition quality. Guided by the surveys, field experiments were conducted to investigate the influence of Zn fertilizer on the productivity and quality of cowpea under integrated soil fertility management (ISFM). Experiments were conducted on two soil-types, namely, sandy (6% clay) and red clay (57% clay) in 2014/15 and 2015/16 where cowpea was grown in rotation with staple maize (Zea mays L.) and fertilized with combinations of Zn, nitrogen (N), phosphorus (P) and two organic nutrient resources, cattle manure and woodland leaf litter. Cowpea grain yields on surveyed farms ranged from 0.3 to 0.9 t haāˆ’1, with grain Zn concentration ranging from 23.9 to 30.1 mg kgāˆ’1. The highest grain Zn concentration was on fields where organic nutrient resources were applied in combination with mineral N and P fertilizers. Within the field experiments, mean grain yields of cowpea increased by between 12 and 18% on both soil types when Zn fertilizer was applied, from a baseline of 1.6 and 1.1 t haāˆ’1 on red clay and sandy soils, respectively. When Zn fertilizer was co-applied with organic nutrient resources, grain Zn concentrations of cowpea reached 42.1 mg kgāˆ’1 (red clay) and 44.7 mg kgāˆ’1 (sandy) against grain Zn concentrations of 35.9 mg kgāˆ’1 and 31.1 mg kgāˆ’1 measured in cowpea grown with no Zn fertilizer on red clay and sandy soils, respectively. Agronomic biofortification of legumes is feasible and has the potential to contribute significantly towards increasing dietary Zn intake by humans. A greater increase in grain Zn of cowpea grown on sandy than red clay soils under Zn fertilization illustrates the influence of soil type on Zn uptake, which should be explored further in agronomic biofortification programs

    Heat and salinity stress on the African eggplant F1 Djamba, a Kumba cultivar

    Get PDF
    Climate change is expected to increase soil salinity and heat-wave intensity, duration, and frequency. These stresses, often present in combination, threaten food security as most common crops do not tolerate them. The African eggplant (Solanum aethiopicum L.) is a nutritious traditional crop found in sub-Saharan Africa and adapted to local environments. Its wider use is, however, hindered by the lack of research on its tolerance. This project aimed to describe the effects of salinity (100 mM NaCl solution) combined with elevated temperatures (27/21Ā°C, 37/31Ā°C, and 42/36Ā°C). High temperatures reduced leaf biomass while cell membrane stability was reduced by salinity. Chlorophyll levels were boosted by salinity only at the start of the stress with only the different temperatures significantly impacted the levels at the end of the experiment. Other fluorescence parameters such as maximum quantum yield and non-photochemical quenching were only affected by the temperature change. Total antioxidants were unchanged by either stress despite a decrease of phenols at the highest temperature. Leaf sodium concentration was highly increased by salinity but phosphorus and calcium were unchanged by this stress. These findings shed new light on the tolerance mechanisms of the African eggplant under salinity and heat. Further research on later developmental stages is needed to understand its potential in the field in areas affected by these abiotic stresses

    Forage grasses with lower uptake of casesium and strontium could provide 'safer' crops for radiologically contaminated areas

    Get PDF
    Substitution of a species or cultivar with higher uptake of an element by one with lower uptake has been proposed as a remediation strategy following accidental releases of radioactivity. However, despite the importance of pasture systems for radiological dose, species/cultivar substitution has not been thoroughly investigated for forage grasses. 397 cultivars from four forage grass species; hybrid ryegrass (Lolium perenne L. x Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.), Italian ryegrass (Lolium multiflorum Lam.) and tall fescue (Festuca arundinacea Shreb.); were sampled from 19 field-based breeding experiments in Aberystwyth and Edinburgh (UK) in spring 2013 and analysed for caesium (Cs) and strontium (Sr) concentrations. In order to calculate concentration ratios (CRs; the concentration of an element in a plant in relation to the concentration in the soil), soils from the experiments were also analysed to calculate extractable concentrations of Cs and Sr. To test if cultivars have consistently low Cs and Sr concentration ratios, 17 hybrid ryegrass cultivars were sampled from both sites again in summer 2013 and spring and summer 2014. Tall fescue cultivars had lower Cs and Sr CRs than the other species. Three of the selected 17 hybrid ryegrass cultivars had consistently low Cs CRs, two had consistently low Sr CRs and one had consistently low Cs and Sr CRs. Cultivar substitution could reduce Cs CRs by up to 14-fold and Sr CRs by 4-fold in hybrid ryegrass. The identification of species and cultivars with consistently low CRs suggests that species or cultivar substitution could be an effective remediation strategy for contaminated areas
    • ā€¦
    corecore