112 research outputs found

    Cloning Dropouts: Implications for Galaxy Evolution at High Redshift

    Full text link
    The evolution of high redshift galaxies in the two Hubble Deep Fields, HDF-N and HDF-S, is investigated using a cloning technique that replicates z~ 2-3 U dropouts to higher redshifts, allowing a comparison with the observed B and V dropouts at higher redshifts (z ~ 4-5). We treat each galaxy selected for replication as a set of pixels that are k-corrected to higher redshift, accounting for resampling, shot-noise, surface-brightness dimming, and the cosmological model. We find evidence for size evolution (a 1.7x increase) from z ~ 5 to z ~ 2.7 for flat geometries (Omega_M+Omega_LAMBDA=1.0). Simple scaling laws for this cosmology predict that size evolution goes as (1+z)^{-1}, consistent with our result. The UV luminosity density shows a similar increase (1.85x) from z ~ 5 to z ~ 2.7, with minimal evolution in the distribution of intrinsic colors for the dropout population. In general, these results indicate less evolution than was previously reported, and therefore a higher luminosity density at z ~ 4-5 (~ 50% higher) than other estimates. We argue the present technique is the preferred way to understand evolution across samples with differing selection functions, the most relevant differences here being the color cuts and surface brightness thresholds (e.g., due to the (1+z)^4 cosmic surface brightness dimming effect).Comment: 56 pages, 22 figures, accepted for publication in Ap

    Mass and Gas Profiles in A1689: Joint X-ray and Lensing Analysis

    Full text link
    We carry out a comprehensive joint analysis of high quality HST/ACS and Chandra measurements of A1689, from which we derive mass, temperature, X-ray emission and abundance profiles. The X-ray emission is smooth and symmetric, and the lensing mass is centrally concentrated indicating a relaxed cluster. Assuming hydrostatic equilibrium we deduce a 3D mass profile that agrees simultaneously with both the lensing and X-ray measurements. However, the projected temperature profile predicted with this 3D mass profile exceeds the observed temperature by ~30% at all radii, a level of discrepancy comparable to the level found for other relaxed clusters. This result may support recent suggestions from hydrodynamical simulations that denser, more X-ray luminous small-scale structure can bias observed temperature measurements downward at about the same (~30%) level. We determine the gas entropy at 0.1r_{vir} (where r_{vir} is the virial radius) to be ~800 keV cm^2, as expected for a high temperature cluster, but its profile at >0.1r_{vir} has a power-law form with index ~0.8, considerably shallower than the ~1.1 index advocated by theoretical studies and simulations. Moreover, if a constant entropy ''floor'' exists at all, then it is within a small region in the inner core, r<0.02r_{vir}, in accord with previous theoretical studies of massive clusters.Comment: 18 pages, 20 figures, 7 tables, accepted for publication in MNRAS, minor changes to match published versio

    Using Weak Lensing Dilution to Improve Measurements of the Luminous and Dark Matter in A1689

    Get PDF
    The E/SO sequence of a cluster defines a boundary redward of which a reliable weak lensing signal can be obtained from background galaxies, uncontaminated by cluster members. For bluer colors, both background and cluster members are present, reducing the distortion signal by the proportion of unlensed cluster members. In deep Subaru and HST/ACS images of A1689 the tangential distortion of galaxies with bluer colors falls rapidly toward the cluster center relative to the lensing signal of the red background. We use this dilution effect to derive the cluster light profile and luminosity function to large radius, with the advantage that no subtraction of far-field background counts is required. The light profile declines smoothly to the limit of the data, r<2Mpc/h, with a constant slope, dlog(L)/dlog(r)=-1.12+-0.06, unlike the lensing mass profile which steepens continuously with radius, so that M/L peaks at an intermediate radius, ~100kpc/h. A flatter behavior is found for the more physically meaningful ratio of dark-matter to stellar-matter, when accounting for the color-mass relation of cluster members. The cluster luminosity function has a flat slope, alpha=-1.05+-0.07, independent of radius and with no faint upturn to M_i'<-12. We establish that the very bluest objects are negligibly contaminated by the cluster V-i'<0.2, because their distortion profile rises towards the center following the red background, but offset higher by ~20%. This larger amplitude is consistent with the greater estimated depth of the faint blue galaxies, z~=2.0 compared to z~=0.85 for the red background, a purely geometric effect related to cosmological parameters. Finally, we improve upon our earlier mass profile by combining both the red and blue background populations, clearly excluding low concentration CDM profiles.Comment: 17 pages, 21 figures, revised version in response to referee comments,(added some discussion, references), conclusions unchanged. Accepted for publication in Ap

    Cloning Hubble Deep Fields I: A Model-Independent Measurement of Galaxy Evolution

    Full text link
    We present a model-independent method of quantifying galaxy evolution in high-resolution images, which we apply to the Hubble Deep Field (HDF). Our procedure is to k-correct all pixels belonging to the images of a complete set of bright galaxies and then to replicate each galaxy image to higher redshift by the product of its space density, 1/V_{max}, and the cosmological volume. The set of bright galaxies is itself selected from the HDF, because presently the HDF provides the highest quality UV images of a redshift-complete sample of galaxies (31 galaxies with I<21.9, \bar{z}=0.5, and for which V/V_{max} is spread fairly). These galaxies are bright enough to permit accurate pixel-by-pixel k-corrections into the restframe UV (\sim 2000 A). We match the shot noise, spatial sampling and PSF smoothing of the HDF data, resulting in entirely empirical and parameter-free ``no-evolution'' deep fields of galaxies for direct comparison with the HDF. In addition, the overcounting rate and the level of incompleteness can be accurately quantified by this procedure. We obtain the following results. Faint HDF galaxies (I>24) are much smaller, more numerous, and less regular than our ``no-evolution'' extrapolation, for any interesting geometry. A higher proportion of HDF galaxies ``dropout'' in both U and B, indicating that some galaxies were brighter at higher redshifts than our ``cloned'' z\sim0.5 population.Comment: 51 pages, 23 figures, replacement includes figures not previously include

    Young Red Spheroidal Galaxies in the Hubble Deep Fields: Evidence for a Truncated IMF at ~2M_solar and a Constant Space Density to z~2

    Full text link
    The optical-IR images of the Northern and Southern Hubble Deep Fields are used to measure the spectral and density evolution of early-type galaxies. The mean optical SED is found to evolve passively towards a mid F-star dominated spectrum by z ~ 2. We demonstrate with realistic simulations that hotter ellipticals would be readily visible if evolution progressed blueward and brightward at z > 2, following a standard IMF. The colour distributions are best fitted by a `red' IMF, deficient above ~2 M_solar and with a spread of formation in the range 1.5 < z_f < 2.5. Traditional age dating is spurious in this context, a distant elliptical can be young but appear red, with an apparent age >3 Gyrs independent of its formation redshift. Regarding density evolution, we demonstrate that the sharp decline in numbers claimed at z > 1 results from a selection bias against distant red galaxies in the optical, where the flux is too weak for morphological classification, but is remedied with relatively modest IR exposures revealing a roughly constant space density to z ~ 2. We point out that the lack of high mass star-formation inferred here and the requirement of metals implicates cooling-flows of pre-enriched gas in the creation of the stellar content of spheroidal galaxies. Deep-field X-ray images will be very helpful to examine this possibility.Comment: 6 pages, 3 figures, submitted to Astrophysical Journal Letters, typographical errors corrected, simulated images with different IMFs illustrated at http://astro.berkeley.edu/~bouwens/ellip.htm

    Large Einstein Radii: A Problem for LambdaCDM

    Full text link
    The Einstein radius of a cluster provides a relatively model-independent measure of the mass density of a cluster within a projected radius of ~ 150 kpc, large enough to be relatively unaffected by gas physics. We show that the observed Einstein radii of four well-studied massive clusters, for which reliable virial masses are measured, lie well beyond the predicted distribution of Einstein radii in the standard LambdaCDM model. Based on large samples of numerically simulated cluster-sized objects with virial masses ~ 1e15 solar, the predicted Einstein radii are only 15-25'', a factor of two below the observed Einstein radii of these four clusters. This is because the predicted mass profile is too shallow to exceed the critical surface density for lensing at a sizable projected radius. After carefully accounting for measurement errors as well as the biases inherent in the selection of clusters and the projection of mass measured by lensing, we find that the theoretical predictions are excluded at a 4-sigma significance. Since most of the free parameters of the LambdaCDM model now rest on firm empirical ground, this discrepancy may point to an additional mechanism that promotes the collapse of clusters at an earlier time thereby enhancing their central mass density.Comment: 9 pages, 5 figures, accepted by MNRA

    Spectral Evidence for Widespread Galaxy Outflows at z>4

    Full text link
    We present discovery spectra of a sample of eight lensed galaxies at high redshift, 3.7<z<5.2, selected by their red colors in the fields of four massive clusters: A1689, A2219, A2390, and AC114. Metal absorption lines are detected and observed to be blueshifted by 300-800 km/s with respect to the centroid of Ly-alpha emission. A correlation is found between this blueshift and the equivalent width of the metal lines, which we interpret as a broadening of saturated absorption lines caused by a dispersion in the outflow velocity of interstellar gas. Local starburst galaxies show similar behavior, associated with obvious gas outflows. We also find a trend of increasing equivalent width of Ly-alpha emission with redshift, which may be a genuine evolutionary effect towards younger stellar populations at high redshift with less developed stellar continua. No obvious emission is detected below the Lyman limit in any of our spectra, nor in deep U or B-band images. The UV continua are reproduced well by early B-stars, although some dust absorption would allow a fit to hotter stars. After correcting for the lensing, we derive small physical sizes for our objects, ~0.5-5 kpc/h for a flat cosmology with Omega_m=0.3, Omega_Lambda=0.7. The lensed images are only marginally resolved in good seeing despite their close proximity to the critical curve, where large arcs are visible and hence high magnifications of up to ~20x are inferred. Two objects show a clear spatial extension of the Ly-alpha emission relative to the continuum starlight, indicating a ``breakout'' of the gas. The sizes of our galaxies together with their large gas motion suggests that outflows of gas are common at high redshift and associated with galaxy formation.Comment: 48 pages, 16 figures, ApJ, in press. Manuscript with full resolution color images available at (http://astro.princeton.edu/~bfrye

    Spectroscopic Confirmation of the Fifth Image of SDSS J1004+4112 and Implications for the M_BH-sigma_* Relation at z=0.68

    Get PDF
    We present the results of deep spectroscopy for the central region of the cluster lens SDSS J1004+4112 with the Subaru telescope. A secure detection of an emission line of the faint blue stellar object (component E) near the center of the brightest cluster galaxy (G1) confirms that it is the central fifth image of the lensed quasar system. In addition, we measure the stellar velocity dispersion of G1 to be sigma_* = 352+-13 km/s. We combine these results to obtain constraints on the mass M_BH of the putative black hole (BH) at the center of the inactive galaxy G1, and hence on the M_BH-sigma_* relation at the lens redshift z_l=0.68. From detailed mass modeling, we place an upper limit on the black hole mass, M_BH < 2.1x10^{10}M_sun at 1-sigma level (<3.1x10^{10}M_sun at 3-sigma), which is consistent with black hole masses expected from the local and redshift-evolved M_BH-sigma_* relations, M_BH~10^{9}-10^{10}M_sun.Comment: 4 pages, 4 figures, accepted to PASJ (PASJ Vol.60, No.5, in press

    The Sextet Arcs: a Strongly Lensed Lyman Break Galaxy in the ACS Spectroscopic Galaxy Survey towards Abell 1689

    Full text link
    We present results of the HST Advanced Camera for Surveys spectroscopic ground-based redshift survey in the field of A1689. We measure 98 redshifts, increasing the number of spectroscopically confirmed objects by sixfold. We present two spectra from this catalog of the Sextet Arcs, images which arise from a strongly-lensed Lyman Break Galaxy (LBG) at a redshift of z=3.038. Gravitational lensing by the cluster magnifies its flux by a factor of ~16 and produces six separate images with a total r-band magnitude of r_625=21.7. The two spectra, each of which represents emission from different regions of the LBG, show H I and interstellar metal absorption lines at the systemic redshift. Significant variations are seen in Ly-alpha profile across a single galaxy, ranging from strong absorption to a combination of emission plus absorption. A spectrum of a third image close to the brightest arc shows Ly-alpha emission at the same redshift as the LBG, arising from either another spatially distinct region of the galaxy, or from a companion galaxy close to the LBG. Taken as a group, the Ly-alpha equivalent width in these three spectra decreases with increasing equivalent width of the strongest interstellar absorption lines. We discuss how these variations can be used to understand the physical conditions in the LBG. Intrinsically, this LBG is faint, ~0.1L*, and forming stars at a modest rate, ~4 solar masses per year. We also detect absorption line systems toward the Sextet Arcs at z=2.873 and z=2.534. The latter system is seen across two of our spectra.Comment: Accepted for publication in Ap
    corecore