8,780 research outputs found
Electrolyte management in porous battery components. Static measurements
The interaction between the porous hydrogen and nickel electrodes and microporous separator with respect to electrolyte management in nickel/hydrogen cells has been investigated. The distribution of electrolyte among the components has been measured and correlated with the pore size distributions, total void volume, and resistance of a variety of electrodes and separators. Calculations are used to show the effects of systematically varying these properties
Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries
Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders
Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit
We cool the fundamental mode of a miniature cantilever by capacitively
coupling it to a driven rf resonant circuit. Cooling results from the rf
capacitive force, which is phase shifted relative to the cantilever motion. We
demonstrate the technique by cooling a 7 kHz cantilever from room temperature
to 45 K, obtaining reasonable agreement with a model for the cooling, damping,
and frequency shift. Extending the method to higher frequencies in a cryogenic
system could enable ground state cooling and may prove simpler than related
optical experiments in a low temperature apparatus.Comment: 4 pages, 4 figures; minor changes to match published versio
Loss of genetic integrity and biological invasions result from stocking and introductions of Barbus barbus: Insights from rivers in England
Anthropogenic activities, including the intentional releases of fish for enhancing populations (stocking), are recognized as adversely impacting the adaptive potential of wild populations. Here, the genetic characteristics of European barbel Barbus barbus were investigated using 18 populations in England, where it is indigenous to eastern-flowing rivers and where stocking has been used to enhance these populations. Invasive populations are also present in western-flowing rivers following introductions of translocated fish. Two genetic clusters were evident in the indigenous range, centered on catchments in northeast and southeast England. However, stocking activities, including the release of hatchery-reared fish, have significantly reduced the genetic differentiation across the majority of this range. In addition, in smaller indigenous rivers, populations appeared to mainly comprise fish of hatchery origin. In the nonindigenous range, genetic data largely aligned to historical stocking records, corroborating information that one particular river (Kennet) in southeast England was the original source of most invasive B. barbus in England. It is recommended that these genetic outputs inform management measures to either restore or maintain the original genetic diversity of the indigenous rivers, as this should help ensure populations can maintain their ability to adapt to changing environmental conditions. Where stocking is considered necessary, it is recommended that only broodstock from within the catchment is used
On a Conjecture of Goriely for the Speed of Fronts of the Reaction--Diffusion Equation
In a recent paper Goriely considers the one--dimensional scalar
reaction--diffusion equation with a polynomial reaction
term and conjectures the existence of a relation between a global
resonance of the hamiltonian system and the asymptotic
speed of propagation of fronts of the reaction diffusion equation. Based on
this conjecture an explicit expression for the speed of the front is given. We
give a counterexample to this conjecture and conclude that additional
restrictions should be placed on the reaction terms for which it may hold.Comment: 9 pages Revtex plus 4 postcript figure
Randomized Benchmarking of Quantum Gates
A key requirement for scalable quantum computing is that elementary quantum
gates can be implemented with sufficiently low error. One method for
determining the error behavior of a gate implementation is to perform process
tomography. However, standard process tomography is limited by errors in state
preparation, measurement and one-qubit gates. It suffers from inefficient
scaling with number of qubits and does not detect adverse error-compounding
when gates are composed in long sequences. An additional problem is due to the
fact that desirable error probabilities for scalable quantum computing are of
the order of 0.0001 or lower. Experimentally proving such low errors is
challenging. We describe a randomized benchmarking method that yields estimates
of the computationally relevant errors without relying on accurate state
preparation and measurement. Since it involves long sequences of randomly
chosen gates, it also verifies that error behavior is stable when used in long
computations. We implemented randomized benchmarking on trapped atomic ion
qubits, establishing a one-qubit error probability per randomized pi/2 pulse of
0.00482(17) in a particular experiment. We expect this error probability to be
readily improved with straightforward technical modifications.Comment: 13 page
Repair of Failing Spirit Lake Outlet Tunnel at Mount St. Helens
The 18 May 1980 eruption of Mount St. Helens resulted in one of the largest debris avalanches recorded in history. The debris avalanche blocked the natural outlet of Spirit Lake. To prevent an uncontrolled and catastrophic lake break-out, the U.S. Army Corps of Engineers (USACE) constructed the Spirit Lake Outlet Tunnel from 1984 to 1985. Because Spirit Lake is located in the Mount St. Helens National Volcanic Monument, the project was transferred to the U.S. Forest Service (USFS) for ownership and management. During original tunnel construction, the most difficulty occurred within the 90-m-wide Julie and Kathy L. shear zone complex. In 1996, tunnel walls within this complex experienced significant convergence, which required major repair along a 30 m segment. During inspections in 2014 and 2015, a 10 m segment at the upstream end of the complex, which had experienced slow heave in the past, was observed to have experienced an increase in heave of approximately 0.6 m, which decreased the hydraulic capacity of the tunnel below acceptable limits. The USACE, in accordance with and with funding from the USFS, designed a repair based on the rib set-shotcrete support system that was used for the 1996 repair. In addition to removing and arresting the heave, the 2015 repair was sized to be compatible with a future potential rehabilitation involving stabilizing and re-grading the invert profile of the Julie and Kathy L. shear zone complex. The 2015 repair construction contract was awarded in September 2015 for $3 million
Design, Fabrication, and Experimental Demonstration of Junction Surface Ion Traps
We present the design, fabrication, and experimental implementation of
surface ion traps with Y-shaped junctions. The traps are designed to minimize
the pseudopotential variations in the junction region at the symmetric
intersection of three linear segments. We experimentally demonstrate robust
linear and junction shuttling with greater than one million round-trip shuttles
without ion loss. By minimizing the direct line of sight between trapped ions
and dielectric surfaces, negligible day-to-day and trap-to-trap variations are
observed. In addition to high-fidelity single-ion shuttling, multiple-ion
chains survive splitting, ion-position swapping, and recombining routines. The
development of two-dimensional trapping structures is an important milestone
for ion-trap quantum computing and quantum simulations.Comment: 9 pages, 6 figure
Is there still a place for the concept of therapeutic regression in psychoanalysis?
The author uses his own failure to find a place for the idea of therapeutic regression in his clinical thinking or practice as the basis for an investigation into its meaning and usefulness. He makes a distinction between three ways the term ‘regression’ is used in psychoanalytic discourse: as a way of evoking a primitive level of experience; as a reminder in some clinical situations of the value of non-intervention on the part of the analyst; and as a description of a phase of an analytic treatment with some patients where the analyst needs to put aside normal analytic technique in order to foster a regression in the patient. It is this third meaning, which the author terms “therapeutic regression” that this paper examines, principally by means of an extended discussion of two clinical examples of a patient making a so-called therapeutic regression, one given by Winnicott and the other by Masud Khan. The author argues that in these examples the introduction of the concept of therapeutic regression obscures rather than clarifies the clinical process. He concludes that, as a substantial clinical concept, the idea of therapeutic regression has outlived its usefulness. However he also notes that many psychoanalytic writers continue to find a use for the more generic concept of regression, and that the very engagement with the more particular idea of therapeutic regression has value in provoking questions as to what is truly therapeutic in psychoanalytic treatment
- …