137 research outputs found

    Mobile health use predicts self-efficacy and self-management in adolescents with sickle cell disease

    Get PDF
    Sickle cell disease (SCD) is associated with significant health challenges that often worsen during adolescence. Living with SCD requires a substantial amount of self-management and mobile health (mHealth) holds considerable promise for assessing and changing behaviors to improve health outcomes. We integrated a mobile app as an adjunct to a group intervention (SCThrive) and hypothesized that more engagement with the mHealth app would increase self-management and self-efficacy for adolescents and young adults (AYA) with SCD. Twenty-six AYA ages 13–21 years (54% female; 46% HbSS genotype; all African-American/Black) received six weekly group sessions (three in-person, three online). Participants were provided with the mobile app (iManage for SCD) to record progress on their self-management goals and log pain and mood symptoms. The Transition Readiness Assessment Questionnaire (TRAQ-5) assessed self-management skills and the Patient Activation Measure (PAM-13) assessed self-efficacy at baseline and post-treatment. Logging on to the app more frequently was associated higher mood ratings (r = .54, CI[.18, .77], p = .006) and lower pain ratings (r = −.48, CI[−.77, −.02], p = .04). Regression analyses demonstrated that after controlling for scores at baseline, the number of logins to the app predicted self-management skills (p = .05, η2 = .17) and possibly self-efficacy (p = .08, η2 = .13). Our study findings indicate that it can be challenging to maintain engagement in mHealth for AYA with SCD, but for those who do engage, there are significant benefits related to self-management, self-efficacy, and managing pain and mood

    Supertwistor space for 6D maximal super Yang-Mills

    Get PDF
    6D maximal super Yang-Mills on-shell amplitudes are formulated in superspace using 6 dimensional twistors. The 3,4,5-point tree amplitudes are obtained by supersymmetrizing their bosonic counterparts and confirmed through the BCFW construction. In contrast to 4D this superspace is non-chiral, reflecting the fact that one cannot differentiate MHV from MHVˉ\bar{{\rm MHV}} in 6D. Combined with unitarity methods, this superspace should be useful for the study of multi-loop D dimensional maximal super Yang-Mills and gravity amplitudes. Furthermore, the non-chiral nature gives a natural framework for an off-shell construction. We show this by matching our result with off-shell D=4 N=4 super Yang-Mills amplitudes, expressed in projective superspace.Comment: 6 figures 28 pages. with better sign

    Monodromy--like Relations for Finite Loop Amplitudes

    Get PDF
    We investigate the existence of relations for finite one-loop amplitudes in Yang-Mills theory. Using a diagrammatic formalism and a remarkable connection between tree and loop level, we deduce sequences of amplitude relations for any number of external legs.Comment: 24 pages, 6 figures, v2 typos corrected, reference adde

    No triangles on the moduli space of maximally supersymmetric gauge theory

    Full text link
    Maximally supersymmetric gauge theory in four dimensions has a remarkably simple S-matrix at the origin of its moduli space at both tree and loop level. This leads to the question what, if any, of this structure survives at the complement of this one point. Here this question is studied in detail at one loop for the branch of the moduli space parameterized by a vacuum expectation value for one complex scalar. Motivated by the parallel D-brane picture of spontaneous symmetry breaking a simple relation is demonstrated between the Lagrangian of broken super Yang-Mills theory and that of its higher dimensional unbroken cousin. Using this relation it is proven both through an on- as well as an off-shell method there are no so-called triangle coefficients in the natural basis of one-loop functions at any finite point of the moduli space for the theory under study. The off-shell method yields in addition absence of rational terms in a class of theories on the Coulomb branch which includes the special case of maximal supersymmetry. The results in this article provide direct field theory evidence for a recently proposed exact dual conformal symmetry motivated by the AdS/CFT correspondence.Comment: 39 pages, 4 figure

    Three particle superstring amplitudes with massive legs

    Full text link
    On-shell superspaces and associated spinor helicity techniques give an efficient formulation of the Ward identities of on-shell supersymmetry for scattering amplitudes and supply tools to construct their solutions. Based on these techniques in this paper the general solutions of the Ward identities are presented for three particle scattering amplitudes with one, two or three massive legs for simple supersymmetry in ten and eight dimensions. It is shown in examples how these solutions may be used to obtain concrete amplitudes for the closed (IIB) and open superstring in a flat background. Explicit results include all three point amplitudes with one massive leg whose functional form is shown to be dictated completely by super-Poincare symmetry. The resulting surprisingly simple series only involves massive superfields labelled by completely symmetric little group representations. The extension to more general explicit three and higher point amplitudes in string theory is initiated. In appendices the field content of the fundamental massive superfields of the open and closed superstring are listed in terms of the Dynkin labels of a variety of groups which may be of independent interest.Comment: 45 pages. v2: typos corrected, references adde

    A manifestly MHV Lagrangian for N=4 Yang-Mills

    Full text link
    We derive a manifestly MHV Lagrangian for the N=4 supersymmetric Yang-Mills theory in light-cone superspace. This is achieved by constructing a canonical redefinition which maps the N=4 superfield and its conjugate to a new pair of superfields. In terms of these new superfields the N=4 Lagrangian takes a (non-polynomial) manifestly MHV form, containing vertices involving two superfields of negative helicity and an arbitrary number of superfields of positive helicity. We also discuss constraints satisfied by the new superfields, which ensure that they describe the correct degrees of freedom in the N=4 supermultiplet. We test our derivation by showing that an expansion of our superspace Lagrangian in component fields reproduces the correct gluon MHV vertices.Comment: 37 pages, 1 figure. v2: minor changes, references adde

    R^4 counterterm and E7(7) symmetry in maximal supergravity

    Get PDF
    The coefficient of a potential R^4 counterterm in N=8 supergravity has been shown previously to vanish in an explicit three-loop calculation. The R^4 term respects N=8 supersymmetry; hence this result poses the question of whether another symmetry could be responsible for the cancellation of the three-loop divergence. In this article we investigate possible restrictions from the coset symmetry E7(7)/SU(8), exploring the limits as a single scalar becomes soft, as well as a double-soft scalar limit relation derived recently by Arkani-Hamed et al. We implement these relations for the matrix elements of the R^4 term that occurs in the low-energy expansion of closed-string tree-level amplitudes. We find that the matrix elements of R^4 that we investigated all obey the double-soft scalar limit relation, including certain non-maximally-helicity-violating six-point amplitudes. However, the single-soft limit does not vanish for this latter set of amplitudes, which suggests that the E7(7) symmetry is broken by the R^4 term.Comment: 33 pages, typos corrected, published versio

    Simple superamplitudes in higher dimensions

    Full text link
    We provide simple superspaces based on a formulation of spinor helicity in general even dimensions. As a distinguishing feature these spaces admit a fermionic super-momentum conserving delta function solution to the on-shell supersymmetry Ward identities. Using these solutions, we present beautifully simple formulae for the complete three, four and five point superamplitudes in maximal super Yang-Mills theory in eight dimensions, and for the three and four point superamplitudes in ten dimensional type IIB supergravity. In addition, we discuss the exceptional kinematics of the three point amplitude, and the supersymmetric spinorial BCFW recursion, in general dimensions.Comment: 34 page
    • …
    corecore