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Abstract In this paper we study the supersymmetric gen-
eralization of the new soft theorem which was proposed by
Cachazo and Strominger recently. At tree level, we prove the
validity of the super soft theorems in both N = 4 super-
Yang-Mills theory and N = 8 supergravity using super-
BCFW recursion relations. We verify these theorems exactly
by showing some examples.
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1 Introduction

Over the past few decades, there was great progress on the
understanding of physical and mathematical structures of
the perturbative scattering amplitudes in gauge and gravity
theories. Among these remarkable developments, a recent
advance is the soft behavior of scattering amplitudes when
one or more external legs tend to zero in both gravity and
Yang-Mills [1–27].

The study on soft behavior of the amplitudes (in gravity)
goes back to Steven Weinberg who proposed the universal
leading soft-graviton behavior using the Feynman diagrams
technique more than 50 years ago [28]. The leading soft-
graviton behavior of the amplitudes, also called “Weinberg’s
theorem”, is uncorrected to all loop orders. At sub-leading
order, the soft photon behavior and the soft graviton behavior
were also studied by using Feynman diagrams [29–31].

Very recently, sub-leading and sub-sub-leading soft-
graviton divergences of amplitudes were proposed [32]
beyond Weinberg’s theorem. In [32], Cachazo and Stro-
minger presented a proof for tree-level amplitudes of gravi-
tons using BCFW recursion relations [33–38] in the spinor-
helicity formulism [39–41]. Similarly, the sub-leading soft
divergence for Yang-Mills amplitudes was obtained by same
analysis in [1]. As pointed out in [4], the sub-leading diver-
gence is vanishing in pure Yang-Mills amplitudes. However,
we will see that the sub-leading Yang-Mills soft operator is
necessary for “KLT-construction” of gravity soft operators
in this paper.

On the other hand, a lot of remarkable progress has also
been made on the understanding of the soft theorem from the
viewpoint of symmetry principles.

The leading and sub-leading soft graviton theorems are
understood as Ward identities of BMS symmetry [25–27].
The leading [18] and sub-leading [17] soft photon theorems
were interpreted as asymptotic symmetries of S-matrix in
massless QED.
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Now aspects of soft theorems have been investigated along
many different directions [1–27]. Loop corrections of soft
theorems were investigated in both gravity and Yang-Mills
[2–5]. Various different methods were used to derive the soft
theorems, including Feynman diagram approach [8] and con-
formal symmetry approach [16] for Yang-Mills, the Poincaré
symmetry and gauge symmetry approach [6,7], ambitwistor
string approach [15] for Yang-Mills and gravity. The new soft
graviton theorem was also obtained from the soft gluon theo-
rem via the Kawai–Lewellen–Tye (KLT) relations [19]. The
scattering equations [42–45], or Cachazo–He–Yuan (CHY)
formulae, were used to study the soft theorems in arbitrary
number of dimensions. The soft divergence in string theory
was also investigated in [4,14].

It is natural and interesting to investigate soft divergences
of amplitudes in supersymmetric theories. In this paper, we
mainly focus on the soft theorems in the maximally super-
symmetric theories, i.e., N = 4 super-Yang-Mills (SYM)
theory and N = 8 supergravity (SUGRA), in 4 spacetime
dimensions. Great progress on analytical calculations of the
scattering amplitudes, in particular at tree-level, has been
achieved in N = 4 SYM and N = 8 SUGRA. A lot of
remarkable and interesting structures of scattering ampli-
tudes were discovered [46–52]. Many novel methods for per-
turbative scattering amplitudes were proposed, and a large
number of amplitudes were also analytically computed in
various theories [53–68]. Scattering amplitudes in massless
QCD were also studied in [69,70].

For example, by solving super-BCFW recursion relation
[33–35,56], the compact analytical formulae for all tree
amplitudes were presented in N = 4 SYM [57], also in
massless QCD with up to four quark-anti-quark pairs [61].

These previous works provide a solid foundation for our
study.

We will systematically study the soft theorems in N = 4
SYM andN = 8 SUGRA using super-BCFW recursion rela-
tions in this work. We will pay special attention to soft grav-
itino divergence, soft gravi-photon divergence for SUGRA
and soft gluino divergence for SYM.

This paper is organized as follows. In the next section, we
briefly review soft theorems in both gravity and Yang-Mills.
In Sect. 3, we present the super soft theorem inN = 4 super-
Yang-Mills with a rigorous proof in detail. There we also
provide some lower-point amplitudes to test the validity of
the super soft theorem, especially for soft gluino divergence.

In Sect. 4, we study the super soft theorem in N = 8
supergravity in detail. As examples, we show that the super
soft theorem is consistent with SUSY Ward identity in the
MHV sector. Several four-boson amplitudes are also exam-
ined exactly.

In Sect. 5, we conclude this paper with some brief dis-
cussions. Appendix A provides an alternative derivation of
soft theorem in N = 4 SYM. Appendix B gives calcula-

tional details of the sub-sub-leading soft operator in N = 8
SUGRA.

2 New soft graviton theorem and soft gluon theorem

In this section we briefly review the new soft graviton the-
orem [32] and the soft gluon theorem [1,71]. We also show
that each order soft operator in gravity may be expressed
as a double copy of Yang-Mills soft operators with gauge
freedom.

2.1 Cachazo-Strominger’s new soft graviton theorem

An on-shell (n + 1)-point scattering amplitude including an
external graviton with momentum ks may be denoted

Mn+1 = Mn+1(k1, . . . , kn, ks). (2.1)

In the soft limit ks → 0, the amplitude Mn+1 behaves as

Mn+1(k1, . . . , kn, ks)

=
(
S(0) + S(1) + S(2)

)
Mn(k1, . . . , kn) + O(k2

s ). (2.2)

The soft operators are given by

S(0) =
n∑

a=1

Eμνk
μ
a kν

a

ks · ka , (2.3)

S(1) = −i
n∑

a=1

Eμνk
μ
a
(
ksσ Jσν

a

)

ks · ka , (2.4)

S(2) = −1

2

n∑
a=1

Eμν

(
ksρ J

ρμ
a

)(
ksσ Jσν

a

)

ks · ka , (2.5)

where Eμν is the polarization tensor of the soft graviton s and
Jμν
a is the total angular momentum of the ath external leg. It

is easy to check that all the soft operators are gauge invariant
[32]. The leading soft factor S(0) proposed by Steven Wein-
berg is uncorrected by all loop orders [28] while sub-leading
and sub-sub-leading soft operators are not, as discussed in
[2–6].

In the spinor-helicity formulism, the momentum vector
kμ of an on-shell massless particle may be represented as a
bispinor, i.e.,

kαα̇ = kμσ
μ
αα̇ = λαλ̃α̇. (2.6)

Introducing an infinitesimal soft parameter ε, one can write
soft limit of the momentum ks of soft particle as

ks → ε ks = ε λs λ̃s

�⇒ λs → εδλs, λ̃s → ε1−δλ̃s . (2.7)

123



Eur. Phys. J. C (2015) 75 :105 Page 3 of 19 105

Here different choices of δ in physical amplitudes can be
linked to each other via the little group transformation, i.e.,

M({tλs, t−1λ̃s, hs}
) = t−2hsM({λs, λ̃s, hs}

)
, (2.8)

where hs is helicity of the particle s. In this paper, one
employs the holomorphic soft limit [56]:

λs → ε λs (2.9)

in which only the holomorphic spinor λs tends to zero while
the anti-holomorphic spinor λ̃s remains unchangeable. The
new soft graviton theorem (2.2) is then

Mn+1(. . . , {ελs, λ̃s})
=

(
1

ε3 S
(0) + 1

ε2 S
(1) + 1

ε
S(2)

)
Mn + O(ε0). (2.10)

In the spinor-helicity formulism,1 the soft operators are given
by

S(0) =
n∑

a=1

[s, a]〈x, a〉〈y, a〉
〈s, a〉〈x, s〉〈y, s〉 , (2.11)

S(1) = 1

2

n∑
a=1

[s, a]
〈s, a〉

( 〈x, a〉
〈x, s〉 + 〈y, a〉

〈y, s〉
)

λ̃sα̇
∂

∂λ̃aα̇

, (2.12)

S(2) = 1

2

n∑
a=1

[s, a]
〈s, a〉 λ̃sα̇ λ̃sβ̇

∂2

∂λ̃aα̇∂λ̃aβ̇

. (2.13)

Here one has assigned soft graviton the helicity hs = +2,
just a convention. Spinors λx , λy are two arbitrary choosen
reference spinors and the freedom in this choice is equivalent
to the gauge freedom.

2.2 Soft gluon theorem in Yang-Mills theory

The similar soft behavior of the scattering amplitudes appears
also in Yang-Mills theory [1,71]. In the soft limit of the
momentum of a gluon, ks → 0, an on-shell color-ordered
Yang-Mills amplitude An+1 becomes

An+1(k1, . . . , kn, ks)

=
(
S(0)

YM + S(1)
YM

)
An(k1, . . . , kn) + O(ks), (2.14)

where the leading soft (eikonal) factor [71] is

1 In this paper, we mainly follow the notation of ref. [32]. The spinor
products are defined as 〈i, j〉 = εαβλiαλ jβ = λiαλα

j and [i, j] =
εα̇β̇ λ̃i α̇ λ̃ j β̇ = λ̃i α̇ λ̃α̇

j , and we use the convention si j = 〈i, j〉[i, j] which
is different from QCD convention.

S(0)
YM ≡

∑
a=1,n

Eμk
μ
a

ks · ka , (2.15)

while the sub-leading soft operator is given by

S(1)
YM ≡ −i

∑
a=1,n

Eμksν J
μν
a

ks · ka , (2.16)

with Eμ the polarization vector of soft gluon.
In the spinor-helicity formulism, employing the holomor-

phic soft limit (2.9), the soft gluon theorem (2.14) may be
expressed as

An+1(. . . , {ελs, λ̃s}) =
(

1

ε2 S
(0) + 1

ε
S(1)

)
An + O(ε0).

(2.17)

Taking the helicity of the soft gluon hs = +1 as a convention,
the soft operators may be written as

S(0)
YM = 〈x, n〉

〈s, n〉〈x, s〉 + 〈x, 1〉
〈s, 1〉〈x, s〉 , (2.18)

S(1)
YM = 1

〈n, s〉 λ̃sα̇
∂

∂λ̃nα̇

+ 1

〈s, 1〉 λ̃sα̇
∂

∂λ̃1α̇

, (2.19)

with λx , λy arbitrary choosen reference spinors and the free-
dom in this choice is equivalent to the gauge freedom.

It is important to note that two amplitudes in the soft the-
orem are both unstripped. In other words, amplitudes An+1

and An in Eq. (2.17) contain respective momentum conser-
vation delta functions. With this in mind, we can remove
dependence of anti-holomorphic spinors λ̃1 and λ̃n in these
two amplitudes by imposing momentum conservation delta
functions appropriately. This implies that the sub-leading soft
divergence vanishes in color-ordered Yang-Mills amplitudes
[4].

As we will see immediately, however, that the operator
S(1)

YM is necessary for constructing gravity soft operators from
Yang-Mills soft operators.

2.3 Gravity soft operators as double copy of Yang-Mills
soft operators

There exists a remarkable relation between gravity ampli-
tudes and Yang-Mills amplitudes. At tree level, Kawai,
Lewellen and Tye (KLT) found that one can express a closed
string amplitude as a sum of the square of open string ampli-
tudes [72]. In field theory limit, this relation expresses a grav-
ity amplitude as a sum of the square of color-ordered Yang-
Mills amplitudes. The similar relation also exists between
gravity soft operators and Yang-Mills soft operators. In [3],
the gravity soft operators were expressed as a double copy of
Yang-Mills soft operators with a special gauge choice which
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associated with the special choice of shifted external legs in
BCFW recursion. In this subsection, we rewrite this relation
with gauge freedom.

First of all, for the sake of convenience, introduce two
notations2

S0(x, s, a) ≡ E+
μ (λx )k

μ
a

ks · ka = 〈x, a〉
〈x, s〉〈s, a〉 , (2.20)

S1(s, a) ≡ −i
E+

μ (λx )ksν J
μν
a

ks · ka = 1

〈s, a〉 λ̃sα̇
∂

∂λ̃aα̇

, (2.21)

which are the fundamental building blocks for constructing
gravity soft operators. Employing these notations, one can
write the Yang-Mills soft operators as

S(0)
YM = S0(x, s, n) + S0(x, s, 1), (2.22)

S(1)
YM(1, s, n) = S1(s, 1) − S1(s, n). (2.23)

Let us note a simple relation that expresses a graviton
polarization tensor as the product of gluon polarization vec-
tors with same momentum, i.e.,

E±
μν(k) = E±

μ (k) × E±
ν (k) + E±

ν (k) × E±
μ (k). (2.24)

Here Eμν have been written in a symmetric form. By making
use of this relation, the leading soft operator in gravity can
be written as:

S(0) =
n∑

a=1

2
(
E+

μ (λx )E+
ν (λy)

)
kμ
a kν

a

ks · ka

=
n∑

a=1

(
2ks · ka

)( E+
μ (λx )k

μ
a

ks · ka
)(

E+
ν (λy)kν

a

ks · ka
)

=
n∑

a=1

ssaS
0(x, s, a)S0(y, s, a) (2.25)

where ssa = 2ks · ka = 〈s, a〉[s, a] and the λx and λy are
arbitrary reference spinors and the freedom in this choice is
equivalent to the gauge freedom. This relation was presented
in [73–75] and derived in [19,76] by KLT realtion [72,77,78].

The sub-leading soft graviton operator can be expressed
as

S(1) = −i
n∑

a=1

(ks · ka)
(
E+

μ (λx )k
μ
a

ks · ka
E+

ν (λy)ksσ Jσν
a

ks · ka + (x ↔ y)

)

= 1

2

n∑
a=1

ssa
(
S0(x, s, a) + S0(y, s, a)

)
S1(s, a) (2.26)

This relation with a special gauge choice was derived in [19]
by KLT realtion [72,77,78].

2 Here the first notation S0 is just famous eikonal factor in Yang-Mills
amplitudes [39,73,74] and the ‘x’ denotes the reference spinor λx in
spinor representation E+

αα̇(λs , λ̃s , λx ) of the polarization vector E+
μ

[40].

Similarly, the sub-sub-leading soft operator may be writ-
ten as

S(2) = 1

2

n∑
a=1

ssa S
1(s, a)S1(s, a) (2.27)

It is important to notice that here the operator product
S1(s, a)S1

(s, a) should be understood as:

S1(s, a)S1(s, a) = 1

〈a, s〉2 λ̃sα̇ λ̃sβ̇
∂2

∂λ̃aα̇∂λ̃aβ̇

. (2.28)

In another words, the differential only acts on the amplitudes.

3 Soft theorem inN = 4 super-Yang-Mills theory

We turn to study the soft theorems in supersymmetric theo-
ries. In this section, we present the soft theorem in N = 4
super-Yang-Mills theory with a rigorous proof at tree level.
We also give some lower-point amplitudes examples to
demonstrate the validity of super soft theorem, in particu-
lar the soft gluino divergence.

Let us begin with a very brief introduction of N = 4
SYM and the superamplitudes in the on-shell superspace.
TheN = 4 on-shell field consists of 8 bosons and 8 fermions
and one can write it out as

h = 1 : 1 gluon g+

h = 1

2
: 4 gluinos �A

h = 0 : 6 scalars SAB

h = −1

2
: 4 gluinos �̄A

h = −1 : 1 gluon g− (3.1)

Here A, B, . . . = 1, 2, 3, 4 are SU(4) R-symmetry indices
and the scalar SAB is antisymmetric in indices A, B. The
N = 4 on-shell superfield can be expanded as follows [79]:

�(p, η) = g+(p) + ηA�A(p) + 1

2!η
AηB SAB(p)

+ 1

3!η
AηBηCεABCD�̄D(p) + η1η2η3η4 g−(p).

(3.2)

Here Grassmann odd variables ηA transforms in a fundamen-
tal representation of the SU(4) R-symmetry.

In super-momentum space, a color-ordered superampli-
tude is a function of spinors λa, λ̃a (or momentum pa) and
Grassmann variables ηa , i.e.,

An ≡ An(�1, . . . , �n)

= An
({λ1, λ̃1, η1}, . . . , {λn, λ̃n, ηn}

)
. (3.3)
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The component field amplitudes are then obtained by pro-
jecting upon the relevant terms in the ηi expansion of the
superamplitude. For detail, see [54–56].

3.1 Super soft theorem in N = 4 SYM

Here we derive the soft theorem inN = 4 SYM with the help
of super-BCFW recursion relation [34,35,56] in the spinor-
helicity formulism [39,41,80]. Let us choose the soft particle
and its adjacent particle to shift:

λs(z)=λs+ zλn, λ̃n(z)= λ̃n − zλ̃s, ηn(z)=ηn − zηs .

(3.4)

These shifts preserve the total momentum and super-momen-
tum. Super-BCFW recursion gives:

An+1 =
n−2∑
a=1

∫
d4ηI AL

({λs(z∗), λ̃s , ηs}, 1, . . . , a, {I (z∗), ηI }
)

× 1

P2
I

AR
({−I (z∗), ηI }, a + 1, . . . , n − 1,

{λn, λ̃n(z∗), ηn(z∗)}
)
. (3.5)

Here the integral over ηI denotes the sum over intermedi-
ate states in ordinary BCFW recursion [56]. The blackboard-
bold style denotes the stripped superamplitude,

An = An δ4(p). (3.6)

According to different Grassmann odd degrees, one can
decompose the superamplitude into various NkMHV sectors,
i.e.,

A
NkMHV
n+1 =

∫
d4ηP A

MHV
3 (z∗) 1

P2 A
NkMHV
n (z∗)

+
k−1∑
m=0

n∑
a=4

∫
d4ηPaA

NmMHV
a (za)

× 1

P2
a
A

N(k−m−1)MHV
n−a+3 (za). (3.7)

As shown explicitly in [32], the singular terms only come
from the term with a = 1 in Eq. (3.5), or the first term of the

right hand side in Eq. (3.7) under the holomorphic soft limit
(2.9). So we drop the terms from contributions with a > 1,
and write

An+1 =
∫

d4ηI A
MHV
3

({ŝ(z∗), ηs}, {1, η1}, {I, ηI }
)

× 1

P2
I

An
({−I, ηI }, {2, η2}, . . . , {n̂(z∗), ηn(z∗)}

)
. (3.8)

Graphically,

n+ 1 ns

1 n− 1

= d4ηI Ls

1

R n

2 n− 1

ηI ηI

Here we have

P2
I = (

ks + k1
)2 = 〈s, 1〉[s, 1], (3.9)

z∗ = − 〈s, 1〉
〈n, 1〉 , (3.10)

λI = λ1, (3.11)

λ̃I = λ̃1 + 〈n, s〉
〈n, 1〉 λ̃s . (3.12)

In on-shell resursions of tree-level amplitudes, three-point
amplitudes are seeds for generating higher-point amplitudes.
In on-shell superspace, the three-point superamplitudes of
N = 4 SYM are given by

A MHV
3 = δ4(p)

〈12〉〈23〉〈31〉δ
8
(∑3

a=1
λα
aηA

a

)
, (3.13)

A MHV
3 = δ4(p)

[12][23][31]δ
4([12]ηA

3 + [23]ηA
1 + [31]ηA

2

)
.

(3.14)

Then it is easy to get the left three-point superamplitude in
Eq. (3.8)

A
MHV
3

({λs(z∗), λ̃s, ηs}, {1, η1}, {I, ηI }
)

= 〈n, 1〉 [s, 1]
〈n, s〉 δ4

(
ηI − 〈n, s〉

〈n, 1〉ηs − η1

)
. (3.15)

Notice that the left superamplitude in Eq. (3.8) is 3-point
anti-MHV one. In fact, this corresponds to the super-shift
(3.4) and in this case the helicity of soft gluon takes positive
one [63]. Inserting the 3-point superamplitude (3.15) into
Eq. (3.8) and computing the integral over ηI give
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An+1 = 〈n, 1〉
〈n, s〉〈s, 1〉 An

({
λ1, λ̃1 + 〈n, s〉

〈n, 1〉 λ̃s,

η1 + 〈n, s〉
〈n, 1〉ηs

}
, {λ2, λ̃2, η2}, . . . ,

{
λn, λ̃n + 〈s, 1〉

〈n, 1〉 λ̃s, ηn + 〈s, 1〉
〈n, 1〉ηs

})
. (3.16)

Dressing both sides of the above equation in respective appro-
priate momentum conservation delta functions, one obtains

An+1 = 〈n, 1〉
〈n, s〉〈s, 1〉An

({
λ1, λ̃1+ 〈n, s〉

〈n, 1〉 λ̃s , η1+ 〈n, s〉
〈n, 1〉ηs

}
,

{λ2, λ̃2, η2}, . . . ,
{
λn, λ̃n + 〈s, 1〉

〈n, 1〉 λ̃s , ηn

+ 〈s, 1〉
〈n, 1〉ηs

} )
. (3.17)

In the holomorphic soft limit (2.9),

An+1(ε) = 1

ε2

〈n, 1〉
〈n, s〉〈s, 1〉An

({
λ1, λ̃1 + ε

〈n, s〉
〈n, 1〉 λ̃s, η1

+ ε
〈n, s〉
〈n, 1〉ηs

}
,

{λ2, λ̃2, η2}, . . . ,
{
λn, λ̃n + ε

〈s, 1〉
〈n, 1〉 λ̃s, ηn

+ ε
〈s, 1〉
〈n, 1〉ηs

})
. (3.18)

Performing Taylor expansion at ε = 0, we obtain the soft
theorem

An+1(ε) =
(

1

ε2 S
(0)
SYM + 1

ε
S(1)

SYM

)
An + O(ε0) (3.19)

where

S(0)
SYM = 〈n, 1〉

〈n, s〉〈s, 1〉 = S(0)
YM, (3.20)

S(1)
SYM = S(1)

YM+ηA
s F (0)

A ,

F (0)
A ≡ 1

〈s, 1〉
∂

∂ηA
1

+ 1

〈n, s〉
∂

∂ηA
n

. (3.21)

Let us expand the superamplitude An+1 in Grassmannian
variables ηs

An+1(�1, . . . , �n,�s)

= An+1(�1, . . . , �n, g
+
s ) + ηA

s An+1(�1, . . . , �n, �s A)

+ 1

2!η
A
s ηB

s An+1(�1, . . . , �n, SsAB) + · · · . (3.22)

According to the degrees of the Grassmann odd ηs , we can
express super soft theorem (3.19) as following:

An+1
(
. . . , g+

s

)
(ε) =

(
1

ε2 S
(0)
YM + 1

ε
S(1)

YM

)
An + O(ε0),

(3.23)

An+1
(
. . . , �s A

)
(ε) = 1

ε
F (0)

A An + O(ε0), (3.24)

An+1
(
. . . , SsAB

)
(ε) = 0

ε
+ O(ε0). (3.25)

In the last equation, the term 0
ε

implies that there is no
singular term. The soft gluon operators in N = 4 SYM are
identical to the ones in pure Yang-Mills. As mentioned in
Sect. 2, the sub-leading soft gluon divergence is also vanish-
ing in N = 4 SYM. As we expected, the amplitudes involve
more types of particle, including gluon, gluino and scalar in
N = 4 SYM. More interestingly, we find the soft divergence
of amplitudes involving a soft fermionic gluino. Notice that
the leading soft gluino operator F (0)

A involves the first order
derivative with respect to the Grassmannian variables η1 and
ηn . In fact, these two terms of F (0)

A change helicity of corre-
sponding external leg in respectively. And this preserves the
total helicity as well as SU(4) R-symmetry before and after
soft gluino emission. We also provide an alternative deriva-
tion of the soft theorem inN = 4 SYM in Appendix A. In the
next subsection, we will check soft theorem by some exam-
ples in detail. We will pay special attention to soft gluino
theorem.

3.2 MHV examples

In the remainder of this section, we verify the soft theorem
presented above by some examples in detail. We take special
care of the property of amplitudes when a gluino leg becomes
soft.

The simplest example is MHV sector. In this sector, one
can study the amplitudes involving an arbitrary number of
external legs. In the holomorphic soft limit λs → ελs , the
soft theorem of pure gluonic MHV amplitudes gives

AMHV
n+1 (ε) = 1

ε2 S
(0)
YMAMHV

n (3.26)

which is exact in ε.
Now we study the amplitudeA(�̄A, g+, . . . , g+, g−, �B)

involving a gluino-anti-gluino pair. Using the soft gluino the-
orem (3.24), we get

An+1
(
�̄A, g+, . . . , g+, g−, �B

)

= δAB
1

ε

1

〈s, 1〉An
(
g−, g+, . . . , g+, g−) + O(ε0). (3.27)

in the holomorphic soft limit λs → ελs . We will show that
there is no O(ε0) corrections in above relation. Noticing the
supersymmetry Ward identity (SWI) [39,54]:
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An+1
(
�̄A, g+, . . . , g+, g−

n , �B
)

= δAB
〈n, s〉
〈n, 1〉An+1

(
g−, g+, . . . , g+, g−, g+)

(3.28)

then using the soft gluon theorem (3.26), we have

δAB
ε〈n, s〉
〈n, 1〉 An+1

(
g−, g+, . . . , g+, g−, g+)

= δAB
ε〈n, s〉
〈n, 1〉 × 1

ε2

〈n, 1〉
〈n, s〉〈s, 1〉An

(
g−, g+, . . . , g+, g−)

= δAB
1

ε

1

〈s, 1〉An
(
g−, g+, . . . , g+, g−)

(3.29)

in the holomorphic soft limit λs → ελs . This agrees with
Eq. (3.27).

In the MHV sector, another a SWI involving two scalars
is [39,54]:

An+1
(
S12, g

−, g+, . . . , g+, S34
)

= 〈2, s〉2

〈2, 1〉2 An+1
(
g−, g−, g+, . . . , g+, g+)

. (3.30)

Using the soft gluon theorem (3.26) for the right hand side
of above equation, one finds that

An+1
(
S12, g

−, g+, . . . , g+, S34
)

λs→ελs������ 〈2, s〉2

〈2, 1〉2 S
(0)
YMAn

(
g−, g−, g+, . . . , g+)

= An+1
(
S12, g

−, g+, . . . , g+, S34
) ∼ O(ε0). (3.31)

It agrees with the soft theorem (3.25). This also shows that
the MHV amplitudes involving two scalars remain invariant
under rescaling of momentum of one of scalars.

3.3 Six-point NMHV examples

Next we turn to the Next-to-MHV (NMHV) sector. In this
sector, it is difficult to check the amplitudes which consist of
an arbitrary number of external legs. Here we mainly check 6-
point NMHV amplitudes involving a gluino-anti-gluino pair
which were obtained by Feynman diagrams [81], also by
solving supersymmetry Ward identity [82] and BCFW recur-
sion [83].

The first example is A6(g
−
1 , g−

2 , �̄A
3 , �4B, g+

5 , g+
6 ):

A6
(
g−

1 , g−
2 , �̄A

3 , �4B, g+
5 , g+

6

)

= − [4|2 + 3|1〉2[3|2 + 4|1〉
s234[23][34]〈56〉〈61〉[2|3 + 4|5〉δ

A
B

+ [6|1 + 2|3〉2[6|1 + 2|4〉
s612[61][12]〈34〉〈45〉[2|6 + 1|5〉δ

A
B . (3.32)

In the soft limit λ4 → ελ4,

A6
(
g−

1 , g−
2 , �̄A

3 , �4B, g+
5 , g+

6

)

= δAB
1

ε

[65]2〈53〉2[6|3 + 5|4〉
s35[61][12]〈34〉〈45〉[23]〈35〉 + O(ε0)

= δAB
1

ε

(
1

〈34〉 A5
(
g−

1 , g−
2 , g−

3 , g+
5 , g+

6

)

+ 1

〈45〉 A5
(
g−

1 , g−
2 , �̄C

3 , �5C , g+
6

)) + O(ε0). (3.33)

This agrees completely with the soft gluino theorem (3.24).
Here we have used two 5-point amplitudes follows:

A5
(
g−

1 , g−
2 , g−

3 , g+
5 , g+

6

) = [56]4

[12][23][35][56][61] , (3.34)

A5
(
g−

1 , g−
2 , �̄A

3 , �5B, g+
6

) = [65]2[63]
[12][23][35][61]δ

A
B . (3.35)

The second example is the amplitude:

A6
(
g−

1 , �̄A
2 , g−

3 , �4B, g+
5 , g+

6

)

= − [4|2 + 3|1〉2[2|3 + 4|1〉
s234[23][34]〈56〉〈61〉[2|3 + 4|5〉δ

A
B

+ [6|1 + 2|3〉2[26]〈34〉
s612[61][12]〈34〉〈45〉[2|6 + 1|5〉δ

A
B . (3.36)

In the soft limit λ4 → ελ4, we have

A6
(
g−

1 , �̄A
2 , g−

3 , �4B, g+
5 , g+

6

)

= δAB
1

ε

[65]2〈53〉2[26]
s35[61][12]〈45〉[23]〈35〉 + O(ε0)

= δAB
1

ε

1

〈45〉 A5
(
g−

1 , �̄A
2 , g−

3 , �5A, g+
6

) + O(ε0) (3.37)

where

A5
(
g−

1 , �̄A
2 , g−

3 , �5B, g+
6

) = [56]
[26]

[56]4

[12][23][35][56][61]δ
A
B .

(3.38)

This also agrees with the soft gluino theorem (3.24). Simi-
larly, after some calculation we have

A6
(
�̄A

1 , g−
2 , g−

3 , �4B, g+
5 , g+

6

)

λ4→ελ4������ 1

ε

1

〈45〉 A5
(
�̄A

1 , g−
2 , g−

3 , �5B, g+
6

) + O(ε0),

(3.39)

A6
(
g−

1 , �̄A
2 , g−

3 , g+
4 , �5B, g+

6

)

λ5→ελ5������ 1

ε

1

〈45〉 A5
(
g−

1 , �̄A
2 , g−

3 , �4B, g+
6

)

+ 1

ε

1

〈56〉 A5
(
g−

1 , �̄A
2 , g−

3 , g+
4 , �6B

) + O(ε0), (3.40)
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A6
(
�̄A

1 , g−
2 , g−

3 , g+
4 , �5B, g+

6

)

λ5→ελ5������ 1

ε

1

〈45〉 A5
(
�̄A

1 , g−
2 , g−

3 , �4B, g+
6

)

+ 1

ε

1

〈56〉 A5
(
�̄A

1 , g−
2 , g−

3 , g+
4 , �6B

) + O(ε0), (3.41)

A6
(
�̄A

1 , g−
2 , �3B, g−

4 , g+
5 , g+

6

)

λ3→ελ3������ 0

ε
+ O(ε0), (3.42)

A6
(
g−

1 , �̄A
2 , �3B, g−

4 , g+
5 , g+

6

)

λ3→ελ3������ 1

ε

1

〈23〉δ
A
B A5

(
g−

1 , g−
2 , g−

4 , g+
5 , g+

6

) + O(ε0),

(3.43)

A6
(
g−

1 , g−
2 , �3B, �̄A

4 , g+
5 , g+

6

)

λ3→ελ3������ 1

ε

1

〈34〉δ
A
B A5

(
g−

1 , g−
2 , g−

4 , g+
5 , g+

6

) + O(ε0),

(3.44)

A6
(
�̄A

1 , �2B, g−
3 , g+

4 , g−
5 , g+

6

)

λ2→ελ2������ 1

ε

1

〈12〉δ
A
B A5

(
g−

1 , g−
3 , g+

4 , g−
5 , g+

6

) + O(ε0),

(3.45)
A6

(
g−

1 , �2B, �̄A
3 , g+

4 , g−
5 , g+

6

)

λ2→ελ2������ 1

ε

1

〈23〉δ
A
B A5

(
g−

1 , g−
3 , g+

4 , g−
5 , g+

6

) + O(ε0),

(3.46)
A6

(
g−

1 , �2B, g−
3 , g+

4 , �̄A
5 , g+

6

)

λ2→ελ2������ 0

ε
+ O(ε0). (3.47)

Here we omit some details. These examples strongly sup-
port the soft gluino theorem (3.24). In addition, the same
checks can be done for other six-point NMHV amplitudes in
N = 4 SYM, for example tree-level four-gluino two-gluon
amplitudes and six-gluino amplitudes [84].

4 Super soft theorem inN = 8 supergravity

The N = 8 Supergravity is the most symmetric quantum
field theory in 4 dimensions. In this section, we study super
soft theorem in N = 8 SUGRA. First we derive the soft
theorem by using super-BCFW recursion relations at tree
level. Then we verify soft divergences of scattering ampli-
tudes of N = 8 SUGRA, in particular soft gravitino and soft
gravi-photon divergences, by some MHV tree-level ampli-
tudes exactly. We also give “KLT-like relations” between soft
operators in N = 8 SUGRA and ones in N = 4 SYM at the
end of this section.

The N = 8 SUGRA consists of 256 massless on-shell
fields which can be characterized as

(N = 8 SUGRA) ∼ (N = 4 SYM) ⊗ (N = 4 SYM).

(4.1)

These on-shell fields form a CPT-self-conjugate supermulti-
plet and may be organized into a single on-shell superfield
�. With the help of the Grassmann odd variables ηA, one can
expand on-shell superfield � follows

�(p, η) = h+(p) + ηAψA(p) + 1

2!η
AηBvAB(p)

+ 1

3!η
AηBηCχABC (p)

+ 1

4!η
AηBηCηDSABCD(p) + · · ·

+ η1η2η3η4η5η6η7η8h−(p). (4.2)

Here A, B, . . . = 1, 2, . . . ,N are SU(8) R-symmetry
indices and each state above is fully antisymmetric in these
labels.

In N = 8 on-shell superspace, there are also fundamental
three-point superamplitudes:

MMHV
3 = δ4(p)(〈12〉〈23〉〈31〉)2 δ16(λα

1 ηA
1 + λα

2 ηA
2 + λα

3 ηA
3

)
,

(4.3)

MMHV
3 = δ4(p)([12][23][31])2 δ8([12]ηA

3 + [23]ηA
1 + [31]ηA

2

)
.

(4.4)

Here each is just the square of corresponding three-point
superamplitude of N = 4 SYM.

4.1 Super soft theorem in N = 8 SUGRA

Now we start to derive the soft theorem. Consider an on-shell
(n+1)-point superamplitudes in N = 8 SUGRA with a soft
external leg �s(λs, λ̃s, ηs)

3

Mn+1 ≡Mn+1
({λ1, λ̃1, η1}, . . . , {λn, λ̃n, ηn}, {λs, λ̃s, ηs}

)
.

(4.5)

Let us choose the following super-shift:

λs(z)= λs+ zλn, λ̃n(z)= λ̃n − zλ̃s, ηn(z) = ηn − zηs .
(4.6)

Using the analysis similar to SYM, the super-BCFW recur-
sion gives

3 Here soft particle may be any one in N = 8 supermultiplet (4.1),
including graviton (spin-2), gravitino (spin-3/2), gravi-photon (spin-1),
gravi-photino (spin-1/2) and scalar (spin-0).

123



Eur. Phys. J. C (2015) 75 :105 Page 9 of 19 105

Mn+1 =
n−1∑
a=1

[s, a]〈n, a〉2

〈s, a〉〈n, s〉2

×Mn

(
. . . ,

{
λa, λ̃a+ 〈n, s〉

〈n, a〉 λ̃s, ηa+ 〈n, s〉
〈n, a〉ηs

}
, . . . ,

{
λn, λ̃n + 〈s, a〉

〈n, a〉 λ̃s, ηn + 〈s, a〉
〈n, a〉ηs

})
. (4.7)

Here one has omitted terms which stay finite in the holomor-
phic soft limits (2.9). Applying the deformation λs → ελs
to above formula, one gets

Mn+1(ε) = 1

ε3

n−1∑
a=1

[s, a]〈n, a〉2

〈s, a〉〈n, s〉2

× Mn

(
. . . ,

{
λa, λ̃a + ε

〈n, s〉
〈n, a〉 λ̃s, ηa

+ ε
〈n, s〉
〈n, a〉ηs

}
, . . . ,

{
λn, λ̃n + ε

〈s, a〉
〈n, a〉 λ̃s, ηn

+ ε
〈s, a〉
〈n, a〉ηs

})
. (4.8)

Performing Taylor expansion of M(ε) around ε = 0, one
obtains the super soft theorem:

Mn+1(ε) =
(

1

ε3S(0) + 1

ε2 S(1) + 1

ε
S(2)

)
Mn + O(ε0).

(4.9)

Here the leading soft factor is same with the one in non-
supersymmetric gravity theory,

S(0) =
n−1∑
a=1

[s, a]〈n, a〉2

〈s, a〉〈n, s〉2 = S(0). (4.10)

The sub-leading soft operator consists of two parts:

S(1) =
n−1∑
a=1

[s, a]〈n, a〉
〈s, a〉〈n, s〉

(
λ̃sα̇

∂

∂λ̃aα̇

+ ηA
s

∂

∂ηA
a

)

= S(1) + ηA
s S(1)

A , (4.11)

while the sub-sub-leading soft operator consists of three
parts:

S(2) = S(2) + ηA
s S(2)

A + 1

2
ηA
s ηB

s S(2)
AB, (4.12)

S(2) = 1

2

n∑
a=1

[s, a]
〈s, a〉 λ̃sα̇ λ̃sβ̇

∂2

∂λ̃aα̇∂λ̃aβ̇

, (4.13)

S(2)
A =

n∑
a=1

[s, a]
〈s, a〉 λ̃sα̇

∂2

∂λ̃aα̇∂ηA
a

, (4.14)

S(2)
AB =

n∑
a=1

[s, a]
〈s, a〉

∂2

∂ηB
a ∂ηA

a
. (4.15)

See Appendix B for some calculational details. Expanding
superamplitudeMn+1 in Grassman odd variables ηs , we have

Mn+1
(
�1, . . . , �n,�s

)

= Mn+1
(
�1, . . . , �n, h

+
s

) + ηA
s Mn+1

(
�1, . . . , �n, ψs A

)

+ 1

2
ηA
s ηB

s Mn+1
(
�1, . . . , �n, vs AB

) + · · · . (4.16)

Thus we can express the soft theorem (4.9) inN = 8 SUGRA
as

soft graviton: Mn+1
(
. . . , h+

s

)
(ε),

=
(

1

ε3 S
(0) + 1

ε2 S
(1) + 1

ε
S(2)

)
Mn + O(ε0), (4.17)

soft gravitino: Mn+1
(
. . . , ψs A

)
(ε)

=
(

1

ε2 S
(1)
A + 1

ε
S(2)
A

)
Mn + O(ε0), (4.18)

soft gravi-photon: Mn+1
(
. . . , vs AB

)
(ε)

= 1

ε
S(2)
ABMn + O(ε0), (4.19)

soft gravi-photino: Mn+1
(
. . . , χs ABC

)
(ε) = 0

ε
+ O(ε0),

(4.20)

soft scalar: Mn+1
(
. . . , SsABCD

)
(ε) = 0

ε
+ O(ε0).

(4.21)

There are more contents in N = 8 SUGRA. Scattering
amplitudes ofN = 8 SUGRA involve more types of particle.
That is, every (hard or soft) external leg in amplitudes may
be any particle of 4D N = 8 SUGRA. Thus the soft graviton
theorem (4.17) in SUGRA incorporates the soft graviton the-
orem for pure graviton amplitudes. Besides the soft graviton
theorem, one obtains leading and sub-leading soft gravitino
divergences and leading soft gravi-photon divergence. Also
one finds that there are no soft gravi-photino divergence and
soft scalar divergence.

In the next subsection, we will check soft theorems by
some examples in the MHV sector of N = 8 SUGRA in
detail. We will pay special attention to the soft gravitino
divergence and the soft gravi-photon divergence.

4.2 MHV examples

For the soft graviton theorem, in particular leading and sub-
leading orders, there are a great deal of study and investi-
gation on both theoretical derivations and special examples
check so far [20,28,32]. In this subsection, we check the soft
theorem of N = 8 SUGRA amplitudes by some examples
of the MHV sector. We mainly focus on the leading and the
sub-leading soft gravitino divergences and the leading soft
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gravi-photon divergence, as well as the property of ampli-
tudes with soft scalar.

First of all, we analyse a special class of amplitudes which
are proportional to MHV amplitudes of gravitons. For such
amplitudes, we can check soft gravitino divergences or soft
gravi-photon divergences by using only soft graviton the-
orem, Eq. (2.2) or Eq. (4.17). In MHV sector of N = 8
SUGRA, there exists the following supersymmetry Ward
identities:4

Mn+1
(
h−

1 , ψ A
2 , h+

3 , . . . , h+
n , ψsB

)

= δAB
〈1, s〉
〈1, 2〉 Mn+1

(
h−

1 , h−
2 , h+

3 , . . . , h+
n , h+

s

)
, (4.22)

Mn+1
(
h−

1 , vAB
2 , h+

3 , . . . , h+
n , vsCD

)

= δABCD
〈1, s〉2

〈1, 2〉2 Mn+1
(
h−

1 , h−
2 , h+

3 , . . . , h+
n , h+

s

)
, (4.23)

Mn+1
(
h−

1 , χ ABC
2 , h+

3 , . . . , h+
n , χsDEF

)

= δABCDEF
〈1, s〉3

〈1, 2〉3 Mn+1
(
h−

1 , h−
2 , h+

3 , . . . , h+
n , h+

s

)
,

(4.24)

Mn+1
(
h−

1 , SABCD
2 , h+

3 , . . . , h+
n , SsEFGH

)

= δABCD
EFGH

〈1, s〉4

〈1, 2〉4 Mn+1
(
h−

1 , h−
2 , h+

3 , . . . , h+
n , h+

s

)

(4.25)

where SABCD = 1

4!ε
ABCDEFGH SEFGH . With the help of

these Ward identities, we can study soft divergences of ampli-
tudes involving lower-spinor soft particles by using only soft
graviton theorem.

4.2.1 Soft gravitino

Here we study the soft gravitino divergence. For the right
hand side of SWI (4.22), by using the soft graviton theorem
we have

δAB
〈1, s〉
〈1, 2〉

(
1

ε2 S
(0) + 1

ε
S(1)

)
Mn

(
h−

1 , h−
2 , h+

3 , . . . , h+
n

)

+ O(ε0). (4.26)

First we consider the leading order O(ε−2):

δAB
1

ε2

〈1, s〉
〈1, 2〉 S

(0)Mn
(
h−

1 , h−
2 , h+

3 , . . . , h+
n

)

=δAB
1

ε2

n−1∑
a=2

〈1, a〉
〈1, 2〉

[s, a]〈n, a〉
〈s, a〉〈n, s〉Mn

(
h−

1 , h−
2 , h+

3 ,. . ., h+
n

)
.

(4.27)

4 Here the generalized Kronecker delta-symbol is defined as

δ
A1...An
B1...Bn

≡
∑
σ∈Sn

sgn(σ ) δ
Aσ(1)

B1
· · · δAσ(n)

Bn
.

In order to get the sub-leading order, substituting soft oper-
ator S(1) into the right hand side of Eq. (4.26), we have

δAB
1

ε

〈1, s〉
〈1, 2〉 S

(1)Mn
(
h−

1 , h−
2 , h+

3 , . . . , h+
n

)

=δAB
1

ε

n∑
a=2

[s, a]
〈s, a〉

〈1, a〉
〈1, 2〉 λ̃sα̇

∂

∂λ̃aα̇

Mn
(
h−

1 , h−
2 , h+

3, . . . ,h+
n

)
.

(4.28)

Here the gauge freedom of S(0) is fixed by taking x = y = 1.
Next we study the soft-gravitino divergence by using

directly the soft gravitino theorem (4.18). From the left hand
side of the identity (4.22), using the leading soft gravitino
theorem (4.18), one can obtain:

1

ε2

n−1∑
a=1

[s, a]〈n, a〉
〈s, a〉〈n, s〉Mn

(
h−

1 , ψ A
2 , . . . ,QaB�a, . . . , h

+
n

)

= 1

ε2

( [s, 2]〈n, 2〉
〈s, 2〉〈n, s〉Mn

(
h−

1 , h−
2 , . . . , h+

n

)
δAB

+
n−1∑
a=3

[s, a]〈n, a〉
〈s, a〉〈n, s〉Mn

(
h−

1 , ψ A
2 , . . . , ψaB, . . . , h+

n

))

= δAB
1

ε2

n−1∑
a=2

[s, a]〈n, a〉
〈s, a〉〈n, s〉

〈1, a〉
〈1, 2〉Mn

(
h−

1 , h−
2 , h+

3 , . . . , h+
n

)
.

(4.29)

This gives the same result as Eq. (4.27). Here one has used the
SUSY Ward identity (4.22) and the operator QaA is defined
by

QaAh
+
a ≡ ψaA,QaAψaB ≡ vaAB,

QaAψ B
a ≡ δBA h−

a ,QaAh
−
a ≡ 0, . . . . (4.30)

Roughly speaking, it make spin (or helicity) of the particle
reduce by one half when an operator QaA act on this par-
ticle. Similarly, applying straightforwardly the sub-leading
soft gravitino theorem (4.18) to the left hand side of the iden-
tity (4.22) gives

1

ε

n∑
a=1

[s, a]
〈s, a〉 λ̃sα̇

∂

∂λ̃aα̇

Mn
(
h−

1 , ψ A
2 , . . . ,QaB�a, . . . , h

+
n

)

= δAB
1

ε

n∑
a=2

[s, a]
〈s, a〉

〈1, a〉
〈1, 2〉 λ̃sα̇

∂

∂λ̃aα̇

Mn
(
h−

1 , h−
2 , h+

3 , . . . , h+
n

)
.

(4.31)

This give the same result as the one from the soft graviton
theorem, Eq. (4.28).

4.2.2 Soft gravi-photon

Since there is only leading soft gravi-photon divergence, just
Weinberg’s leading soft graviton theorem is need. In the holo-

123



Eur. Phys. J. C (2015) 75 :105 Page 11 of 19 105

morphic soft limit λs → ελs , using leading soft graviton
theorem5 the right hand side of the SWI (4.23) becomes

1

ε
δABCD

〈1, s〉2

〈1, 2〉2 S
(0)Mn

(
h−

1 , h−
2 , h+

3 , . . . , h+
n

) + O(ε0)

= 1

ε
δABCD

n∑
a=2

〈1, a〉2

〈1, 2〉2

[s, a]
〈s, a〉

× Mn
(
h−

1 , h−
2 , h+

3 , . . . , h+
n

) + O(ε0). (4.32)

On the other hand, by applying straightforwardly the soft
gravi-photon theorem (4.19) to the left hand side of the SWI
(4.23), one gets

Mn+1
(
h−

1 , vAB
2 , . . . , vs CD

)

= 1

ε

n∑
a=1

[s, a]
〈s, a〉Mn

(
h−

1 , vAB−
2 ,. . .,QaDQaC�a,. . ., h

+
n

)

+ O(ε0)

= 1

ε

( [s, 2]
〈s, 2〉Mn

(
h−

1 , h−
2 , . . . , h+

n

)
δABCD

+
n∑

a=3

[s, a]
〈s, a〉Mn

(
h−

1 , vAB
2 , . . . , vaCD, . . . , h+

n

)) + O(ε0)

= 1

ε
δABCD

n∑
a=2

[s, a]
〈s, a〉

〈1, a〉2

〈1, 2〉2 Mn
(
h−

1 , h−
2 , h+

3 , . . . , h+
n

)

+ O(ε0). (4.33)

Here one has used the Ward identity (4.23).
Next we analyse two 4-point amplitudes which have been

computed by using both generating function method pro-
posed in [58] and Feynman diagrams respectively in [62].
The first example is 4-gravi-photon amplitude:

M4
(
vAB, vCD, vEF , vGH

)

= 〈12〉2[34]2
(

1

t
δABEFδCD

GH + 1

u
δABGH δCD

EF + 1

s
δABCD
EFGH

)

(4.34)

where s, t , u are Mandelstam variables

s = (k1 + k2)
2 = (k3 + k4)

2 = s12 = s34, (4.35)

t = (k1 + k3)
2 = (k2 + k4)

2 = s13 = s24, (4.36)

u = (k1 + k4)
2 = (k2 + k3)

2 = s14 = s23. (4.37)

In holomorphic soft limit λ4 → ελ4, the amplitude becomes

M4
(
vAB, vCD, vEF , ε vGH

)

= 1

ε

( 〈12〉2[34]2

〈24〉[24] δABEFδCD
GH + 〈12〉2[34]2

〈14〉[14] δABGH δCD
EF

5 It is necessary to notice that gauge freedoms in soft factor S(0) are
fixed by setting x = y = 1.

+〈12〉2[34]2

〈34〉[34] δABCD
EFGH

)

= 1

ε

( [24]
〈24〉

〈12〉4

〈13〉2 δABEFδCD
GH + [14]

〈14〉
〈12〉4

〈23〉2 δABGH δCD
EF

+[34]〈12〉2

〈34〉 δABCD
EFGH

)
(4.38)

which is exact in ε. In the last line, one used the momen-
tum conservation conditions: 〈12〉[24] = −〈13〉[34] and
〈21〉[14] = −〈23〉[34].

Notice that following 3-point amplitudes of N = 8
SUGRA:

M3
(
h−

1 , vCD
2 , v3EF

) = 〈12〉4

〈23〉2 δCD
EF , (4.39)

M3
(
vAB

1 , h−
2 , v3EF

) = 〈12〉4

〈31〉2 δABEF , (4.40)

M3
(
vAB

1 , vCD
2 , S3EFGH

) = 〈12〉2δABCD
EFGH . (4.41)

Then one finds that

M4
(
vAB, vCD, vEF , εvGH

)

= 1

ε

( [24]
〈24〉M3

(
vAB

1 , h−
2 , v3EF

)
δCD
GH

+ [14]
〈14〉M3

(
h−

1 , vCD
2 , v3EF

)
δABGH

+ [34]
〈34〉M3

(
vAB

1 , vCD
2 , S3EFGH

))
. (4.42)

Very nice! This is just the result from soft gravi-photon
theorem.

Another example is 2-scalar 2-gravi-photon amplitude:

M4
(
vAB, vCD, SEFGH , SI J K L

)

= 〈13〉2[23]2
(

1

s
δABCDεEFGH I J K L

+ 3!
t

δAB[EFεGH ]I J K LCD + 3!
u

δAB[I J εK L]EFGHCD

)
. (4.43)

We study the property of this amplitude when external parti-
cle vCD becomes soft. In holomorphic soft limit λ2 → ελ2,
this amplitude becomes

M4
(
vAB, ε vCD, SEFGH , SI J K L

)

= 1

ε

( [12]
〈12〉

〈13〉2〈14〉2

〈34〉2 δABCDεEFGH I J K L

+ 3! [24]
〈24〉 〈14〉2δAB[EFεGH ]I J K LCD

+ 3! [23]
〈23〉 〈13〉2δAB[I J εK L]EFGHCD

)
. (4.44)
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Here used the momentum conservation conditions:
[23]
[12] =

〈14〉
〈34〉 and 〈13〉[23] = −〈14〉[24].

Note the following three-point MHV amplitudes:

M3
(
h−

1 , S3EFGH , S4I J K L
) = 〈13〉2〈14〉2

〈34〉2 εEFGH I J K L

(4.45)

M3
(
vAB

1 , vMN
3 , S4I J K L

) = 〈13〉2δABMN
I J K L (4.46)

M3
(
vAB

1 , S3EFGH , vMN
4

) = 〈14〉2δABMN
EFGH (4.47)

Then we have6

M4
(
vAB, ε vCD, SEFGH , SI J K L

)

= 1

ε

( [21]
〈21〉δ

AB
CDM3

(
h−

1 , S3EFGH , S4I J K L
)

+ 1

2

[23]
〈23〉εMNEFGHCDM3

(
vAB

1 , vMN
3 , S4I J K L

)

+ 1

2

[24]
〈24〉εMN I J K LCDM3

(
vAB

1 , S3EFGH , vMN
4

))
.

(4.48)

By applying straightforwardly the soft gravi-photon theo-
rem (4.19) to amplitude M4

(
vAB, vCD, SEFGH , SI J K L

)
,

one can also obtain the same result.

4.2.3 Soft gravi-photino and soft scalar

According to SUSY Ward identities (4.24) and (4.25), one
finds

Mn+1
(
h−

1 , χ ABC
2 , h+

3 , . . . , h+
n , χsDEF

) ∼ O(ε0), (4.49)

Mn+1
(
h−

1 , SABCD
2 , h+

3 , . . . , h+
n , SsEFGH

)∼O(ε) (4.50)

in the holomorphic soft limit λs → ελs . These results accord
with the soft theorems (4.20) and (4.21).

Next we study the 2-scalar 2-gravi-photon amplitude
(4.43) which have been discussed previously. In the holomor-
phic soft limit λ4 → ελ4, since 〈13〉2[23]2 = 〈14〉2[24]2 ∼
ε2, s ∼ t ∼ u ∼ ε, this amplitude becomes

M4(v
−v+φφ)

∣∣
λ4→ελ4

∼ ε → 0. (4.51)

In the MHV sector of N = 8 SUGRA, there are also ampli-
tudes involving four scalars. Here we analyse a 4-scalar
amplitude which was computed in [62]:

6 Here one has used a identity

1

2
δABMN
EFGH εMN I J K LCD = 3!δAB[EFεGH ]I J K LCD .

M4
(
SABCD, SEFGH , SI J K L , SMN PQ

)

= tu

s
εABCDEFGH εI J K LMN PQ

+ su

t
εABCDI J K LεEFGHMN PQ

+ st

u
εABCDMN PQεEFGH I J K L

+ 1

2(4!)3

∑
σ

sgn(σ )

[
s ε1112131431324344 ε2122232441423334

+ t ε1112131421224344 ε3132333441422324

+ u ε1112131421223334 ε4142434431322324

]
. (4.52)

Here {11121314} denotes permutations of {A, B,C, D} and
so forth [62]. In holomorphic soft limit λ4 → ελ4, since
s ∼ t ∼ u ∼ ε, the amplitude behaves as

M4(φφφφ)
∣∣
λ4→ελ4

∼ ε → 0. (4.53)

A great deal of research shows that amplitudes vanish in soft
scalar limit, which indicates a hidden global E7(7) symmetry
of classical N = 8 SUGRA [56,58,85–90]. This is consist
with our soft theorem (4.21).

4.3 SUGRA soft operators as double copy of SYM soft
operators

As discussed in Sect. 2.3, the gravity soft operator can be
expressed as double copy of gauge theory soft operators.
This also occurs in supersymmetric theories. In the end of
this section, we write the soft operators in N = 8 SUGRA in
terms of a sum of some products of soft operators in N = 4
SYM.

First introducing a new operator involving the derivative
with respect to Grassmann odd variable ηA

a as follows:

S1
η(s, a) ≡ 1

〈s, a〉η
A
s

∂

∂ηA
a

. (4.54)

Then the soft operators in N = 4 SYM may be written as

S(0)
SYM = S(0)

YM = S0(x, s, n) + S0(x, s, 1), (4.55)

S(1)
SYM =

(
S1(s, 1) − S1(s, n)

)
+

(
S1

η(s, 1) − S1
η(s, n)

)
.

(4.56)

The ‘KLT-like formula’ of the leading soft factor S(0) in
gravity has been obtained in Sect. 2.3. The sub-leading soft
operator may be written as:

S(1) = 1

2

n∑
a=1

ssa
(
S0(x, s, a) + S0(y, s, a)

)

×
(
S1(s, a) + S1

η(s, a)
)

(4.57)
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where λx and λy are arbitrary reference spinors. The sub-
sub-leading soft operator may be expressed as

S(2) = 1

2

n∑
a=1

ssa
(
S1(s, a) + S1

η(s, a)
)

×
(
S1(s, a) + S1

η(s, a)
)
. (4.58)

As mentioned in Sect. 2.3, all derivatives in operators only
act on amplitudes. These relations may be derived using the
scheme proposed in [19] by super-KLT relation [72,76–78,
91,92].

5 Conclusion and discussions

In this work, the super soft theorems were investigated sys-
tematically in 4D maximally N = 4 super-Yang-Mills the-
ory and N = 8 supergravity. We have presented the super
soft theorems with rigorous proofs at tree level. The main
results are Eq. (3.19) for SYM and Eq. (4.9) for SUGRA.
In N = 4 SYM, several simple examples were examined
and the results were in agreement with the super soft theo-
rem exactly. In N = 8 SUGRA, employing the SUSY Ward
identities, we verified the soft gravitino and soft gravi-photon
divergences by using leading and sub-leading soft graviton
theorem in the MHV sector. Several four-point amplitudes
were also checked in details.

There are several further topics that are fascinating for us.
First, properties of amplitudes involving soft fermion should
be investigated more systematically. In this paper, we dis-
cussed the soft gluino divergence for color-ordered ampli-
tudes of N = 4 SYM and the soft gravitino divergence
and the soft gravi-photino divergence for N = 8 SUGRA
amplitudes. It will be interesting to study the properties of
amplitudes involving soft fermion in other theories.

Second, it will be interesting to find other methods to
derive the soft theorems. Let us take an example. In [57], all
tree-level superamplitudes inN = 4 SYM were expressed as
compact analytical formulas. By taking the soft limit directly,
it gives the soft theorem as shown in Appendix A. The sim-
ilar formulas for all tree-level superamplitudes in N = 8
SUGRA were also obtained in [60]. We will also study soft
theorem through these formulas in future work.

Finally, more on the relations between the soft theorems
and symmetry principle should be understood.

Although the leading and sub-leading soft graviton theo-
rems in gravity [25–27,32,93] and leading and sub-leading
soft-photon theorems in massless QED [17] were interpreted
as symmetries of S-matrixes in recent works, very limited
information was known for other soft divergences. Our par-
ticular interest is to explore the remarkable relations between
super soft theorems and local supersymmetry.
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Appendix A: Alternative derivation of soft theorem
inN = 4 SYM

In this appendix, we rederive the soft theorem of N = 4
SYM by using formulaes for all tree-level superamplitudes
which were given in [57].

First of all, we have to summarize briefly main results
of Drummond and Henn’s paper [57]. Three-point ampli-
tudes are fundamental in BCFW-construction of higher-point
amplitudes. In Sect. 3, three-point MHV and Googly (or anti-
MHV) superamplitudes ofN = 4 SYM have been presented.
By solving super-BCFW resursion, it is easy to obtainn-point
(n > 3) MHV superamplitudes

A MHV
n

({λa, λ̃a, ηa}
) = δ4(p)δ8(q)

〈12〉〈23〉 · · · 〈n1〉 . (A.1)

The n-point MHV superamplitude is simple and compact,
just as Parke-Taylor formula of the pure gluonic amplitude.
The delta functions δ4(p) and δ8(q) are consequences of
translation invariance and supersymmetry. Therefore all tree-
level superamplitudes, not just MHV, contain delta function
factor δ4(p)δ8(q) in N = 4 SYM. So it is very convenient
to factor out the MHV superamplitude,

An = A MHV
n Pn . (A.2)

Here Pn is a function of spinors λa , λ̃a and Grassmann vari-
ables ηA

a and one can express this quantity as following form:

Pn = PMHV
n + PNMHV

n + · · · + PMHV
n . (A.3)

Of course PMHV
n = 1, and the NkMHV function PNkMHV

n
has Grassmann degree 4k.

Turning to the NMHV sector, the functionPNMHV
n is given

by [57]

PNMHV
n =

∑
2≤a<b≤n−1

Rn;ab. (A.4)

Here Rn;ab is a dual superconformal invariant [46–51,57–60]
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Rn;ab

= 〈a, a−1〉〈b, b−1〉δ4
(
�n;ab

)

x2
ab〈n|xnaxab|b〉〈n|xnaxab|b−1〉〈n|xnbxba |a〉〈n|xnbxba |a−1〉

(A.5)

where

xi j ≡ ki + ki+1 + · · · + k j−1, (A.6)

θi j ≡ qi + qi+1 + · · · + q j−1, qa ≡ λaηa, (A.7)

and the Grassmann odd quantity �n;ab is defined by

�n;ab ≡ 〈n|xnaxab|θbn〉 + 〈n|xnbxba |θan〉

= 〈n|
(
xnaxab

n−1∑
i=b

|i〉ηi + xnbxba

n−1∑
i=a

|i〉ηi
)

. (A.8)

Obviously, this quantity is independent of η1 and ηn . In fact,
it is relevant to a special gauge choice.

Similarly, NNMHV function also may be constructed as
follows

PNNMHV
n =

∑
2≤a1,b1≤n−1

R0;0
n,a1b1

×
⎛
⎝ ∑

a1+1≤a2,b2≤b1

R0;a1b1
n;b1a1;a2b2

+
∑

b1≤a2,b2≤n−1

Ra1b1;0
n;a2b2

⎞
⎠ .

(A.9)

Here has involved a quantity which is a generalization of the
R-invariant,

Rn;b1a1;b2a2;...;br ar ;ab

= 〈a, a−1〉〈b, b−1〉δ4
(
�n;b1a1;b2a2;...;br ar ;ab

)

x2
ab|ξ〉xar a xab|b〉|ξ〉xar a xab|b−1〉|ξ〉xar bxba |a〉|ξ〉xar bxba |a−1〉 .

(A.10)

For details, see [57].
More generally, all thePNkMHV

n functions can be written in
terms of the quantities Rn;b1a1;b2a2;...;br ar ;ab. It is somewhat
surprising that all quantities (A.10) are independent of η1 and

ηn and so are all PNkMHV
n , i.e.,

∂

∂ηA
1

Pn = ∂

∂ηA
n
Pn = 0. (A.11)

In fact, this reflects the special gauge choice of shifted legs
in BCFW recursion.

Now we turn to study soft theorem. The n-point MHV
superamplitude is not only the simplest in all n-point ampli-
tudes, but a common factor for all amplitudes. So we begin
with MHV sectors.

First we write the delta function δ8(q) as

δ8(q) = 〈1, n〉4 δ4

(
〈n, s〉
〈n, 1〉η

A
s + ηA

1 +
n−1∑
a=2

〈n, a〉
〈n, 1〉ηA

a

)

× δ4

(
〈1, s〉
〈1, n〉η

B
s + ηB

n +
n−1∑
a=2

〈1, a〉
〈1, n〉η

B
a

)
. (A.12)

When the soft particle is gluon, we have

A MHV
n+1

(
�1, . . . , �n, g

+
s

) = δ4(p) 〈1, n〉4

〈s, 1〉〈1, 2〉 · · · 〈n, s〉

× δ4

(
ηA

1 +
n−1∑
a=2

〈n, a〉
〈n, 1〉ηA

a

)
δ4

(
ηB
n +

n−1∑
a=2

〈1, a〉
〈1, n〉η

B
a

)

= 〈n, 1〉
〈s, 1〉〈n, s〉

δ4(p)

〈1, 2〉 · · · 〈n, 1〉δ
8
(∑n

a=1
λα
aηA

a

)
.

(A.13)

In the holomorphic soft limit λs → ελs , it can give the
leading soft factor of Yang-Mills amplitude.

When the soft particle is gluino, we have

ηA
s A

MHV
n+1

(
�1, . . . , �n, ψs A

)

= 〈n, 1〉
〈n, s〉〈s, 1〉

δ4(p) 〈1, n〉4

〈1, 2〉 · · · 〈n, 1〉

×
{ 〈n, s〉

〈n, 1〉 × (−1)A+1ηA
s

∏
B �=A

(
ηB

1 +
n−1∑
a=2

〈n, a〉
〈n, 1〉ηB

a

)

×
∏
C

(
ηCn +

n−1∑
a=2

〈1, a〉
〈1, n〉η

C
a

)

+ 〈1, s〉
〈1, n〉 × (−1)A+1ηA

s

∏
C

(
ηC1 +

n−1∑
a=2

〈n, a〉
〈n, 1〉ηCa

)

×
∏
B �=A

(
ηB
n +

n−1∑
a=2

〈1, a〉
〈1, n〉η

B
a

)}

= 〈n, 1〉
〈n, s〉〈s, 1〉

( 〈n, s〉
〈n, 1〉η

A
s

∂

∂ηA
1

+ 〈1, s〉
〈1, n〉η

A
s

∂

∂ηA
n

)

× A MHV
n

(
�1, . . . , �n

)
. (A.14)

In the holomorphic soft limit λs → ελs , it gives O(ε−1)

order soft divergence. When the soft particle is scalar, it is also
easy to see that MHV superamplitudes are invariant under the
holomorphic soft rescaling λs → ελs .

Another task is to see the function Pn+1 in the holomor-
phic soft limit. First we consider soft behavior of NMHV
function:7

7 Here we fix gauge such that the function PNMHV
n+1 is independent of

ηn and ηs .
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PNMHV
n+1 (1, . . . , n̂, ŝ) =

∑
1≤a<b≤n−1

Rn;ab(1, . . . , n̂, ŝ)

(A.15)

Here dual superconformal invariant Rn;ab is given by

Rn;ab(1, . . . , n̂, ŝ)

= 〈a, a−1〉〈b, b−1〉δ4
(
�n;ab

)

x̃2
ab〈n|x̃na x̃ab|b〉〈n|x̃na x̃ab|b−1〉〈n|x̃nb x̃ba |a〉〈n|x̃nb x̃ba |b−1〉

(A.16)

where

�n;ab = 〈n|
(
x̃na x̃ab

n−1∑
i=b

|i〉ηi + x̃nb x̃ba

n−1∑
i=a

|i〉ηi
)

. (A.17)

Here the dual variable x̃ab corresponds to the ordering
(1, . . . , n, s) of (n + 1)-point color-ordered superampli-
tude An+1(�1, . . . , �n,�s) while the variable xab corre-
sponds to the ordering (1, . . . , n) of n-point superamplitude
An(�1, . . . , �n).

In the holomorphic soft limit λs → ελs ,

〈a, a−1〉 =
{

ε〈1, s〉 for a = 1,

〈a, a−1〉 for a ≥ 2,
(A.18)

x̃na = εks + k1 + · · · + ka−1 = xna + εks, (A.19)

x̃ab = xab for 1 ≤ a < b ≤ n − 1, (A.20)

x̃ba = xba + εks for 1 ≤ a < b ≤ n − 1, (A.21)

1

x̃na
= 1

xna
+ O(ε), (A.22)

1

x̃ba
= 1

xba
+ O(ε) for 1 ≤ a < b ≤ n − 1. (A.23)

Substituting above formulas into Eq. (A.15), one finds

PNMHV
n+1 (1, . . . , n̂, ŝ)=

∑
2≤a<b≤n−1

Rn;ab(1̂, . . . , n̂)+O(ε)

= PNMHV
n (1̂, . . . , n̂) + O(ε). (A.24)

in the holomorphic soft limit λs → ελs . Applying same
analysis to PNNMHV

n , Eq. (A.9), one also obtains

PNNMHV
n+1 (1, . . . , n̂, ŝ) = PNNMHV

n (1̂, . . . , n̂) + O(ε).

(A.25)

Using the same method, we can show that the similar con-
clusion holds for all NkMHV sectors of N = 4 SYM, i.e.,

Pn+1
(
1, . . . , n, s

) = Pn
(
1, . . . , n

) + O(ε). (A.26)

Let us notice that the function Pn+1 is independent of
Grassmann variables ηA

s with a certain gauge choice. Using

Eq. (A.26) and (A.13), it is easy to obtain the leading soft
gluon divergence,

An+1
(
. . . , g+

s

) ≡ A MHV
n+1

(
. . . , g+

s

)Pn+1

= 1

ε2

〈n, 1〉
〈s, 1〉〈n, s〉A

MHV
n

(
Pn + O(ε)

)
. (A.27)

in the holomorphic soft limit λs → ελs . As was discussed
earlier, there is no sub-leading soft gluon divergence and here
we no longer discuss it. For soft luino, by using Eqs. (A.26)
and (A.14), one gets

An+1
(
. . ., ψs A

)= 1

ε

〈n, 1〉
〈n, s〉〈s, 1〉

( 〈n, s〉
〈n, 1〉

∂

∂ηA
1

+ 〈1, s〉
〈1, n〉

∂

∂ηA
n

)

× A MHV
n

(
Pn + O(ε)

)
. (A.28)

in the holomorphic soft limit λs → ελs . Both A MHV
n+1 and

Pn+1 have no singular term in the holomorphic soft limit
λs → ελs of a scalar. This implies that there exists no sin-
gularity when a external scalar becomes soft in an on-shell
amplitude.

Appendix B: Sub-sub-leading soft operator in N = 8
SUGRA

In this appendix, we compute the sub-sub-leading soft oper-
ator in N = 8 SUGRA by a Taylor expansion in detail.

As shown in Sect. 4, in the holomorphic soft limit λs →
ελs , the superamplitude Mn+1 becomes

Mn+1(ε) = 1

ε3

n−1∑
a=1

[s, a]〈n, a〉2

〈s, a〉〈n, s〉2

× Mn

(
. . . ,

{
λa, λ̃a + ε

〈n, s〉
〈n, a〉 λ̃s, ηa + ε

〈n, s〉
〈n, a〉ηs

}
, . . . ,

{
λn, λ̃n + ε

〈s, a〉
〈n, a〉 λ̃s, ηn + ε

〈s, a〉
〈n, a〉ηs

})
. (B.1)

Let us denote

G(ε) = Mn

(
. . . ,

{
λa, λ̃a + ε

〈n, s〉
〈n, a〉 λ̃s, ηa + ε

〈n, s〉
〈n, a〉ηs

}
,

. . . ,
{
λn, λ̃n + ε

〈s, a〉
〈n, a〉 λ̃s, ηn + ε

〈s, a〉
〈n, a〉ηs

})
(B.2)

then expand it in infinitesimal soft parameter ε:

G(ε) = G(0) + εG ′(0) + 1

2
ε2G ′′(0) + O(ε3). (B.3)
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The first two orders contribute to the leading and the sub-
leading soft operators respectively. The second order in ε

is

G ′′(0) =G ′′
λ(0) + G ′′

λη(0) + G ′′
η(0), (B.4)

G ′′
λ(0) = λ̃sα̇ λ̃sβ̇

( 〈n, s〉2

〈a, n〉2

∂2

∂λ̃aα̇∂λ̃aβ̇

− 2
〈n, s〉〈a, s〉

〈n, a〉2

∂2

∂λ̃aα̇∂λ̃nβ̇

+ 〈a, s〉2

〈a, n〉2

∂2

∂λ̃nα̇∂λ̃nβ̇

)
Mn, (B.5)

G ′′
λη(0) = 2λ̃sα̇ηA

s

( 〈n, s〉2

〈a, n〉2

∂2

∂λ̃aα̇∂ηA
a

+ 〈n, s〉〈s, a〉
〈a, n〉2

(
∂2

∂λ̃aα̇∂ηA
n

+ ∂2

∂λ̃nα̇∂ηA
a

)

+ 〈s, a〉2

〈n, a〉2

∂2

∂λ̃nα̇∂ηA
n

)
Mn, (B.6)

G ′′
η(0) = ηA

s ηB
s

( 〈n, s〉2

〈a, n〉2

∂2

∂ηB
a ∂ηA

a

− 2
〈n, s〉〈a, s〉

〈n, a〉2

∂2

∂ηB
a ∂ηA

n
+ 〈a, s〉2

〈a, n〉2

∂2

∂ηB
n ∂ηA

n

)
Mn .

(B.7)

It is important to notice that here the derivative with respect
to the Grassmann variable ηA is left derivative. Plugging the
second derivative G ′′(0) on the right hand side of Eq. (B.1),
we obtain

S(2)Mn

= 1

2ε

n−1∑
a=1

[s, a]〈n, a〉2

〈s, a〉〈n, s〉2

(
G ′′

λ(0) + G ′′
λη(0) + G ′′

η(0)
)
.

(B.8)

The first term (B.5) on the right hand side of Eq. (B.8) has
obtained in Cachazo-Strominger’s paper [32]:

S(2) = 1

2

n∑
a=1

[s, a]
〈s, a〉 λ̃sα̇ λ̃sβ̇

∂2

∂λ̃aα̇∂λ̃aβ̇

. (B.9)

By using similar derivation, it is easy to write down the third
term (B.7) on the right hand side of Eq. (B.8):

S(2)
η = 1

2

n∑
a=1

[s, a]
〈s, a〉η

A
s ηB

s
∂2

∂ηB
a ∂ηA

a
. (B.10)

The second term (B.6) on the right hand side of Eq. (B.8)
is given by

S(2)
λη Mn

=
n−1∑
a=1

λ̃sα̇ηA
s

( [s, a]
〈s, a〉

∂2

∂λ̃aα̇∂ηA
a

+ [s, a]
〈n, s〉

(
∂2

∂λ̃aα̇∂ηA
n

+ ∂2

∂λ̃nα̇∂ηA
a

)

+ 〈s, a〉[s, a]
〈n, s〉2

∂2

∂λ̃nα̇∂ηA
n

)
Mn . (B.11)

Noticing that

n−1∑
a=1

〈s, a〉[s, a] =
n−1∑
a=1

2ks · ka

= −2ks · (
kn + ks

) = −2ks · kn
= −〈s, n〉[s, n], (B.12)

then the last term of Eq. (B.11) becomes

n−1∑
a=1

〈s, a〉[s, a]
〈n, s〉2 λ̃sα̇ηA

s
∂2

∂λ̃nα̇∂ηA
n

Mn

= −[s, n]
〈s, n〉 λ̃sα̇ηA

s
∂2

∂λ̃nα̇∂ηA
n

Mn . (B.13)

Write the second term of Eq. (B.11) as follows:

n−1∑
a=1

[s, a]
〈n, s〉 λ̃sα̇ηA

s
∂2

∂λ̃aα̇∂ηA
n

Mn

= ηA
s λ̃sβ̇ λ̃sα̇

〈n, s〉
n−1∑
a=1

λ̃α̇
a

∂2

∂λ̃aβ̇ ∂ηA
n

Mn . (B.14)

Using the global angular momentum conservation, we get

λ̃sβ̇ λ̃sα̇

n−1∑
a=1

λ̃α̇
a

∂

∂λ̃aβ̇

Mn

= −λ̃sβ̇ λ̃sα̇ λ̃α̇
n

∂

∂λ̃nβ̇

Mn = −[s, n]λ̃sα̇ ∂

∂λ̃nα̇

Mn . (B.15)

Thus we have

n−1∑
a=1

[s, a]
〈n, s〉 λ̃sα̇ηA

s
∂2

∂λ̃aα̇∂ηA
n

Mn

= [s, n]
〈s, n〉 λ̃sα̇ηA

s
∂2

∂λ̃nα̇ ∂ηA
n

Mn . (B.16)

The third term of Eq. (B.11) may be written as:

n−1∑
a=1

[s, a]
〈n, s〉 λ̃sβ̇ηA

s
∂2

∂λ̃nβ̇ ∂ηA
a

Mn

= ηA
s λ̃sβ̇ λ̃sα̇

〈n, s〉
n−1∑
a=1

λ̃α̇
a

∂2

∂ηA
a ∂λ̃nβ̇

Mn . (B.17)
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Using the supersymmetry,8 we have

λ̃sα̇

n−1∑
a=1

λ̃α̇
a

∂

∂ηA
a
Mn

= −λ̃sα̇ λ̃α̇
n

∂

∂ηA
n
Mn = −[s, n] ∂

∂ηA
n
Mn . (B.18)

Thus we obtain the third term of Eq. (B.11):

n−1∑
a=1

[s, a]
〈n, s〉 λ̃sβ̇ηA

s
∂2

∂λ̃nβ̇ ∂ηA
a

Mn

= [s, n]
〈s, n〉 λ̃sα̇ηA

s
∂2

∂λ̃nα̇∂ηA
n

Mn . (B.19)

Combining all the contributions, we get

S(2)
λη Mn =

n∑
a=1

[s, a]
〈s, a〉 λ̃sα̇ηA

s
∂2

∂λ̃aα̇∂ηA
a

Mn . (B.20)

Finally, we obtain a complete sub-sub-leading soft oper-
ator in N = 8 SUGRA

S(2) = 1

2

n∑
a=1

[s, a]
〈s, a〉

×
(

λ̃sα̇ λ̃sβ̇
∂2

∂λ̃aα̇∂λ̃aβ̇

+2λ̃sα̇ηA
s

∂2

∂λ̃aα̇∂ηA
a

+ηA
s ηB

s
∂2

∂ηB
a ∂ηA

a

)
.

(B.21)
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