36 research outputs found

    Reconstructing Racially Polarized Voting

    Get PDF
    Racially polarized voting makes minorities more vulnerable to discriminatory changes in election laws and therefore implicates nearly every voting rights doctrine. In Thornburg v. Gingles , the Supreme Court held that racially polarized voting is a necessary—but not a sufficient—condition for a vote dilution claim under Section 2 of the Voting Rights Act. The Court, however, has recently questioned the propriety of recognizing the existence of racially polarized voting. This colorblind approach threatens not only the Gingles factors but also Section 2’s constitutionality. The Court treats racially polarized voting as a modern phenomenon. But the relevant starting point is the 1860s, not the 1960s. Prior to the Fifteenth Amendment’s passage, Republicans received overwhelming support from newly enfranchised Black voters in the former Confederate States and expected that support to continue. The Reconstruction Framers were thus attentive to the realities of racially polarized voting and openly recognized that extending the franchise would empower Black voters to mobilize politically and protect their own interests. Racially polarized voting was a feature—not a bug—in the passage and ratification of the Fifteenth Amendment. Accordingly, this Article argues that the Court’s treatment of racially polarized voting as a constitutional taboo is historically unfounded and doctrinally incoherent. There are significant implications for acknowledging the role of racially polarized voting during Reconstruction. This historical insight moves vote dilution claims—and their predicate finding of racially polarized voting—far closer to the heart of the Reconstruction Amendments and challenges the Court’s hostility to race-based redistricting. It is powerful evidence that Congress is well within its enforcement authority to remedy and deter dilutive measures that exploit racially polarized voting. Finally, reconstructing racially polarized voting helps reorient voting rights doctrine toward a Fifteenth Amendment framework

    Туров и его историко-культурное наследие

    Get PDF
    Материалы IV Республик. науч. конф. студентов, магистрантов и аспирантов, Гомель, 12 мая 2011 г

    Long-term cognitive impairments in adult rats treated neonatally with beta-N-Methylamino-L-Alanine

    No full text
    Most cyanobacteria (blue-green algae) can produce the neurotoxin beta-N-methylamino-L-alanine (BMAA). Dietary exposure to BMAA has been suggested to be involved in the etiology of the neurodegenerative disease amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS/PDC). Little is known about BMAA-induced neurotoxicity following neonatal administration. Our previous studies have revealed an uptake of BMAA in the hippocampus and striatum of neonatal mice. Furthermore, rats treated with BMAA during the neonatal period displayed acute but transient motoric disturbances and failed to show habituation at juvenile age suggesting impairments in learning functions. In the present study, the aim was to investigate long-term behavioral effects of BMAA administration in neonatal rats. BMAA was administered on postnatal days 9-10 (200 or 600 mg/kg; subcutaneous injection). Spatial learning and memory was investigated in adulthood using the radial arm maze test. The results revealed impaired learning but not memory in BMAA-treated animals. The observed impairments were not due to alterations in motoric capacity, general activity, or behavioral profiles, as assessed in the multivariate concentric square field (MCSF) and open field tests. An aversive stimulus in the MCSF test revealed impairments in avoidance learning and/or memory. There was no difference in basal serum corticosterone levels in BMAA-treated animals, indicating that the observed long-term effects were not secondary to an altered basal hypothalamic-pituitary-adrenal axis function. The present data demonstrated long-term learning impairments following neonatal BMAA administration. Further studies on biochemical effects in various brain regions and subsequent behavioral alterations are needed to elucidate the mechanisms of BMAA-induced developmental neurotoxicity

    The cyanobacterial neurotoxinbeta-N-methylamino-L-alanine (BMAA) targets the olfactory bulb region

    No full text
    Olfactory dysfunction is implicated in neurodegenerative disorders and typically manifests years before other symptoms. The cyanobacterial neurotoxin beta-N-methylamino-l-alanine (BMAA) is suggested as a risk factor for neurodegenerative disease. Detection of BMAA in air filters has increased the concern that aerosolization may lead to human BMAA exposure through the air. The aim of this study was to determine if BMAA targets the olfactory system. Autoradiographic imaging showed a distinct localization of radioactivity in the right olfactory mucosa and bulb following a unilateral intranasal instillation of H-3-BMAA (0.018 mu g) in mice, demonstrating a direct transfer of BMAA via the olfactory pathways to the brain circumventing the blood-brain barrier, which was confirmed by liquid scintillation. Treatment of mouse primary olfactory bulb cells with 100 mu M BMAA for 24 h caused a disruption of the neurite network, formation of dendritic varicosities and reduced cell viability. The NMDA receptor antagonist MK-801 and the metabotropic glutamate receptor antagonist MCPG protected against the BMAA-induced alterations, demonstrating the importance of glutamatergic mechanisms. The ionotropic non-NMDA receptor antagonist CNQX prevented the BMAA-induced decrease of cell viability in mixed cultures containing both neuronal and glial cells, but not in cultures with neurons only, suggesting a role of neuron-glial interactions and glial AMPA receptors in the BMAA-induced toxicity. The results show that the olfactory region may be a target for BMAA following inhalation exposure. Further studies on the relations between environmental olfactory toxicants and neurodegenerative disorders are warranted

    Selective Brain Uptake and Behavioral Effects of the Cyanobacterial Toxin BMAA (β-N-Methylamino-L-alanine) following Neonatal Administration to Rodents

    No full text
    Cyanobacteria are extensively distributed in terrestrial and aquatic environments all over the world. Most cyanobacteria can produce the neurotoxin ss-N-methylamino-L-alanine (BMAA), which has been detected in several water systems and could accumulate in food chains. The aim of the study was to investigate the transfer of BMAA to fetal and neonatal brains and the effects of BMAA on the development of behavioral characteristics during the brain growth spurt (BGS) in rodents Pregnant and neonatal mice were given an injection of (3)H-BMAA on gestational day 14 and postnatal day (PND) 10, respectively, and processed for tape-section autoradiography. The study revealed transplacental transfer of (3)H-BMAA and a significant uptake in fetal mouse. The radioactivity was specifically located in the hippocampus, striatum, brainstem, spinal cord and cerebellum of 10-day-old mice. The effect of repeated BMAA treatment (200 or 600 mg/kg sc) during BGS on rat behavior was also studied. BMAA treatment on PND 9-10 induced acute alterations, such as impaired locomotor ability and hyperactivity, in the behavior of neonatal rats. Furthermore, rats given the high dose of BMAA failed to habituate to the test environment when tested at juvenile age. In conclusion, the results demonstrated that BMAA was transferred to the neonatal brain and induced significant changes in the behavior of neonatal rats following administration during BGS. The observed behavioral changes suggest possible cognitive impairment. Increased information on the long-term effects of BMAA on cognitive function following fetal and neonatal exposure is required for assessment of the risk to children's health

    Long-Term Effects of Perinatal Exposure to a Glyphosate-Based Herbicide on Melatonin Levels and Oxidative Brain Damage in Adult Male Rats

    No full text
    Concerns have been raised regarding the potential adverse health effects of the ubiquitous herbicide glyphosate. Here, we investigated long-term effects of developmental exposure to a glyphosate-based herbicide (GBH) by analyzing serum melatonin levels and cellular changes in the striatum of adult male rats (90 days old). Pregnant and lactating rats were exposed to 3% GBH (0.36% glyphosate) through drinking water from gestational day 5 to postnatal day 15. The offspring showed reduced serum melatonin levels (43%) at the adult age compared with the control group. The perinatal exposure to GBH also induced long-term oxidative stress-related changes in the striatum demonstrated by increased lipid peroxidation (45%) and DNA/RNA oxidation (39%) together with increased protein levels of the antioxidant enzymes, superoxide dismutase (SOD1, 24%), glutamate-cysteine ligase (GCLC, 58%), and glutathione peroxidase 1 (GPx1, 31%). Moreover, perinatal GBH exposure significantly increased the total number of neurons (20%) and tyrosine hydroxylase (TH)-positive neurons (38%) in the adult striatum. Mechanistic in vitro studies with primary rat pinealocytes exposed to 50 mu M glyphosate demonstrated a decreased melatonin secretion partially through activation of metabotropic glutamate receptor 3 (mGluR3), while higher glyphosate levels (100 or 500 mu M) also reduced the pinealocyte viability. Since decreased levels of the important antioxidant and neuroprotector melatonin have been associated with an increased risk of developing neurodegenerative disorders, this demonstrates the need to consider the melatonin hormone system as a central endocrine-related target of glyphosate and other environmental contaminants

    Maternal Transfer of the Cyanobacterial Neurotoxin beta-N-Methylamino-L-Alanine (BMAA) via Milk to Suckling Offspring

    Get PDF
    The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease and proposed to be biomagnified in terrestrial and aquatic food chains. We have previously shown that the neonatal period in rats, which in humans corresponds to the last trimester of pregnancy and the first few years of age, is a particularly sensitive period for exposure to BMAA. The present study aimed to examine the secretion of C-14-labeled L-and D-BMAA into milk in lactating mice and the subsequent transfer of BMAA into the developing brain. The results suggest that secretion into milk is an important elimination pathway of BMAA in lactating mothers and an efficient exposure route predominantly for L-BMAA but also for D-BMAA in suckling mice. Following secretion of [C-14] L-BMAA into milk, the levels of [C-14] L-BMAA in the brains of the suckling neonatal mice significantly exceeded the levels in the maternal brains. In vitro studies using the mouse mammary epithelial HC11 cell line confirmed a more efficient influx and efflux of L-BMAA than of D-BMAA in cells, suggesting enantiomer-selective transport. Competition experiments with other amino acids and a low sodium dependency of the influx suggests that the amino acid transporters LAT1 and LAT2 are involved in the transport of L-BMAA into milk. Given the persistent neurodevelopmental toxicity following injection of L-BMAA to neonatal rodent pups, the current results highlight the need to determine whether BMAA is enriched mother's and cow's milk

    CYP2A5-mediated activation and early ultrastructural changes in the olfactory: Studies on 2,6-dichlorophenyl methylsulfone

    No full text
    2,6-Dichlorophenyl methylsulfone (2,6-diClPh-MeSO2) is a potent olfactory toxicant reported to induce endoplasmic reticulum (ER) stress, caspase activation, and extensive cell death in mice. The aim of the present study was to examine cytochrome P450 (P450)- dependent bioactivation, nonprotein sulfhydryl (NP-SH) levels, and early ultrastructural changes in mouse olfactory mucosa following an i.p. injection of 2,6-diClPh-MeSO2 (32 mg/kg). A high covalent binding of 2,6-diClPh-14C-MeSO2 in olfactory mucosa S9 fraction was observed, and the CYP2A5/CYP2G1 substrates coumarin and dichlobenil significantly decreased the binding, whereas the CYP2E1 substrate chlorzoxazone had no effects. An increased bioactivation was detected in liver microsomes of mice pretreated with pyrazole, known to induce CYP2A4, 2A5, 2E1, and 2J, and addition of chlorzoxazone reduced this binding. 2,6-DiClPh-14CMeSO2 showed a marked covalent binding to microsomes of recombinant yeast cells expressing mouse CYP2A5 or human CYP2A6 compared with wild type. One and 4 h after a single injection of 2,6-diClPh-MeSO2, the NP-SH levels in the olfactory mucosa were significantly reduced compared with control, whereas there was no change in the liver. Ultrastructural studies revealed that ER, mitochondria, and secretory granules in nonneuronal cells were early targets 1 h after injection. We propose that lesions induced by 2,6-diClPh-MeSO2 in the mouse olfactory mucosa were initiated by a P450-mediated bioactivation in the Bowman’s glands and depletion of NP-SH levels, leading to disruption of ion homeostasis, organelle swelling, and cell death. The high expression of CYP2A5 in the olfactory mucosa is suggested to play a key role for the tissue-specific toxicity induced by 2,6- diClPh-MeSO2
    corecore