9,707 research outputs found

    Scaling Solutions of Inelastic Boltzmann Equations with Over-populated High Energy Tails

    Get PDF
    This paper deals with solutions of the nonlinear Boltzmann equation for spatially uniform freely cooling inelastic Maxwell models for large times and for large velocities, and the nonuniform convergence to these limits. We demonstrate how the velocity distribution approaches in the scaling limit to a similarity solution with a power law tail for general classes of initial conditions and derive a transcendental equation from which the exponents in the tails can be calculated. Moreover on the basis of the available analytic and numerical results for inelastic hard spheres and inelastic Maxwell models we formulate a conjecture on the approach of the velocity distribution function to a scaling form.Comment: 15 pages, 4 figures. Accepted in J. Statistical Physic

    Extension of Haff's cooling law in granular flows

    Get PDF
    The total energy E(t) in a fluid of inelastic particles is dissipated through inelastic collisions. When such systems are prepared in a homogeneous initial state and evolve undriven, E(t) decays initially as t^{-2} \aprox exp[ - 2\epsilon \tau] (known as Haff's law), where \tau is the average number of collisions suffered by a particle within time t, and \epsilon=1-\alpha^2 measures the degree of inelasticity, with \alpha the coefficient of normal restitution. This decay law is extended for large times to E(t) \aprox \tau^{-d/2} in d-dimensions, far into the nonlinear clustering regime. The theoretical predictions are quantitatively confirmed by computer simulations, and holds for small to moderate inelasticities with 0.6< \alpha< 1.Comment: 7 pages, 4 PostScript figures. To be published in Europhysics Letter

    Asymptotic solutions of the nonlinear Boltzmann equation for dissipative systems

    Full text link
    Analytic solutions F(v,t)F(v,t) of the nonlinear Boltzmann equation in dd-dimensions are studied for a new class of dissipative models, called inelastic repulsive scatterers, interacting through pseudo-power law repulsions, characterized by a strength parameter ν\nu, and embedding inelastic hard spheres (ν=1\nu=1) and inelastic Maxwell models (ν=0\nu=0). The systems are either freely cooling without energy input or driven by thermostats, e.g. white noise, and approach stable nonequilibrium steady states, or marginally stable homogeneous cooling states, where the data, v0d(t)F(v,t)v^d_0(t) F(v,t) plotted versus c=v/v0(t)c=v/v_0(t), collapse on a scaling or similarity solution f(c)f(c), where v0(t)v_0(t) is the r.m.s. velocity. The dissipative interactions generate overpopulated high energy tails, described generically by stretched Gaussians, f(c)exp[βcb]f(c) \sim \exp[-\beta c^b] with 0<b<20 < b < 2, where b=νb=\nu with ν>0\nu>0 in free cooling, and b=1+1/2νb=1+{1/2} \nu with ν0\nu \geq 0 when driven by white noise. Power law tails, f(c)1/ca+df(c) \sim 1/c^{a+d}, are only found in marginal cases, where the exponent aa is the root of a transcendental equation. The stability threshold depend on the type of thermostat, and is for the case of free cooling located at ν=0\nu=0. Moreover we analyze an inelastic BGK-type kinetic equation with an energy dependent collision frequency coupled to a thermostat, that captures all qualitative properties of the velocity distribution function in Maxwell models, as predicted by the full nonlinear Boltzmann equation, but fails for harder interactions with ν>0\nu>0.Comment: Submitted to: "Granular Gas Dynamics", T. Poeschel, N. Brilliantov (eds.), Lecture Notes in Physics, Vol. LNP 624, Springer-Verlag, Berlin-Heidelberg-New York, 200

    Hydrogenated grain boundaries in graphene

    Full text link
    We have investigated by means of first principles calculations the structural and electronic properties of hydrogenated graphene structures with distinct grain boundary defects. Our total energy results reveal that the adsorption of a single H is more stable at grain boundary defect. The electronic structure of the grains boundaries upon hydrogen adsorption have been examined. Further total energy calculations indicate that the adsorption of two H on two neighbor carbons, forming a basic unit of graphane, is more stable at the defect region. Therefore, we expect that these extended defects would work as a nucleation region for the formation of a narrow graphane strip embedded in graphene region

    Towards a Landau-Ginzburg-type Theory for Granular Fluids

    Get PDF
    In this paper we show how, under certain restrictions, the hydrodynamic equations for the freely evolving granular fluid fit within the framework of the time dependent Landau-Ginzburg (LG) models for critical and unstable fluids (e.g. spinodal decomposition). The granular fluid, which is usually modeled as a fluid of inelastic hard spheres (IHS), exhibits two instabilities: the spontaneous formation of vortices and of high density clusters. We suppress the clustering instability by imposing constraints on the system sizes, in order to illustrate how LG-equations can be derived for the order parameter, being the rate of deformation or shear rate tensor, which controls the formation of vortex patterns. From the shape of the energy functional we obtain the stationary patterns in the flow field. Quantitative predictions of this theory for the stationary states agree well with molecular dynamics simulations of a fluid of inelastic hard disks.Comment: 19 pages, LaTeX, 8 figure

    Efficient evaluation of decoherence rates in complex Josephson circuits

    Full text link
    A complete analysis of the decoherence properties of a Josephson junction qubit is presented. The qubit is of the flux type and consists of two large loops forming a gradiometer and one small loop, and three Josephson junctions. The contributions to relaxation (T_1) and dephasing (T_\phi) arising from two different control circuits, one coupled to the small loop and one coupled to a large loop, is computed. We use a complete, quantitative description of the inductances and capacitances of the circuit. Including two stray capacitances makes the quantum mechanical modeling of the system five dimensional. We develop a general Born-Oppenheimer approximation to reduce the effective dimensionality in the calculation to one. We explore T_1 and T_\phi along an optimal line in the space of applied fluxes; along this "S line" we see significant and rapidly varying contributions to the decoherence parameters, primarily from the circuit coupling to the large loop.Comment: 16 pages, 20 figures; v2: minor revisio

    Percolation and cooperation with mobile agents: Geometric and strategy clusters

    Get PDF
    We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius rP, which accounts for the population viscosity, and an interaction radius rint, which defines the instantaneous contact network for the game dynamics. We show that, differently from the rP=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size
    corecore