943 research outputs found
Prediction of the environmental impact and sustainability of large-scale irrigation with gypsiferous mine-water on groundwater resources
Irrigation of agricultural crops is one of the most cost-effective options for the utilisation of gypsiferous mine wastewater. In addition, it creates the opportunity to produce crops during the dry season. Gypsum is a slightly soluble salt and concentrating the gypsiferous soil solution through crop evapotranspiration precipitates gypsum in the soil profile, removing it from the water system and reducing the potential for groundwater pollution. In previous research, it was found that crops can be commercially produced under irrigation with gypsiferous mine- water with no obvious impact on groundwater in the short term (3 years). It was, however, recommended that monitoring should continue to confirm findings over a longer period and for different conditions. A research project was therefore initiated in 2001 to determine the impact of  irrigation with several gypsiferous water/soil combinations on crop performance, soil properties and groundwater quality. Field trials were carried out in South Africa on three mines: Kleinkopjé and New Vaal Collieries (Anglo Coal), and at Syferfontein (Sasol). Different crop and pasture species were grown on different soil types under centre-pivot irrigation with different mine-water qualities. Intensive monitoring systems were established in each irrigated field to determine the components of the soil-water and salt balance. Boreholes were also installed to monitor groundwater level and quality. Field water and salt balance data were used for calibration and validation of the mechanistic, generic crop, Soil-Water Balance (SWB) Model. The results of the field trials indicated that high crop and pasture yields can be obtained, provided site selection, land preparation, fertilisation and irrigation water management are appropriate. The results of the soil-water and salt balance studies indicated that considerable volumes of mine-water can be used and substantial amounts of salts can be removed from the water system through precipitation of gypsum in the soil profile. The groundwater impact was limited based on borehole measurements, indicating the presence of a zone of attenuation between the cropped soil profile and groundwater, but this should be monitored over a longer period. With appropriate management, water and salt runoff, and under specific conditions, drainage and salts leached can be intercepted, thereby minimising unwanted impacts on groundwater. Thirty-year scenario simulations were run with SWB and the generated salt loads from this model were used as input into a separate groundwater model in order to predict the likely long-term effects of irrigation with gypsiferous mine-water on groundwater. The results of these simulations showed that while salts reached the groundwater, there was a drop in concentration of the plume as it moved away from the irrigated area. This was due largely to dilution by infiltration from rainfall recharge and the dispersive characteristics of the aquifer. The simulations also showed the importance of matching the amount of drainage from an irrigated site with the transmissivity and storage properties of the aquifer below. These results suggest that large-scale irrigation with gypsiferous water could be viable if irrigated fields are carefully sited to prevent waterlogging and are well managed. A site-specific approach is essential. Water SA Vol 32(1)pp:21-2
Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides
All-optical signal processing is envisioned as an approach to dramatically
decrease power consumption and speed up performance of next-generation optical
telecommunications networks. Nonlinear optical effects, such as four-wave
mixing (FWM) and parametric gain, have long been explored to realize
all-optical functions in glass fibers. An alternative approach is to employ
nanoscale engineering of silicon waveguides to enhance the optical
nonlinearities by up to five orders of magnitude, enabling integrated
chip-scale all-optical signal processing. Previously, strong two-photon
absorption (TPA) of the telecom-band pump has been a fundamental and
unavoidable obstacle, limiting parametric gain to values on the order of a few
dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier
exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near
one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic
TPA-related absorption vanishes. This gain is high enough to compensate all
insertion losses, resulting in 13 dB net off-chip amplification. Furthermore,
dispersion engineering dramatically increases the gain bandwidth to more than
220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its
significant relevance to all-optical signal processing, the broadband
parametric gain also facilitates the simultaneous generation of multiple
on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range.
Together, these results provide a foundation for the construction of
silicon-based room-temperature mid-IR light sources including tunable
chip-scale parametric oscillators, optical frequency combs, and supercontinuum
generators
Inkjet printed circuits with two-dimensional semiconductor inks for high-performance electronics
Air-stable semiconducting inks suitable for complementary logic are key to create low-power printed integrated circuits (ICs). High-performance printable electronic inks with two-dimensional materials have the potential to enable the next generation of high performance, low-cost printed digital electronics. Here we demonstrate air-stable, low voltage (< 5 V) operation of inkjet-printed n-type molybdenum disulfide (MoS2) and p-type indacenodithiophene-co-benzothiadiazole (IDT-BT) field-effect transistors (FETs), estimating a switching time of {\tau} ~ 3.3 {\mu}s for the MoS2 FETs. We achieve this by engineering high-quality MoS2 and air-stable IDT-BT inks suitable for inkjet-printing complementary pairs of n-type MoS2 and p-type IDT-BT FETs. We then integrate MoS2 and IDT-BT FETs to realise inkjet-printed complementary logic inverters with a voltage gain |Av| ~ 4 when in resistive load configuration and |Av| ~ 1.36 in complementary configuration. These results represent a key enabling step towards ubiquitous long-term stable, low-cost printed digital ICs
Imbibition in Disordered Media
The physics of liquids in porous media gives rise to many interesting
phenomena, including imbibition where a viscous fluid displaces a less viscous
one. Here we discuss the theoretical and experimental progress made in recent
years in this field. The emphasis is on an interfacial description, akin to the
focus of a statistical physics approach. Coarse-grained equations of motion
have been recently presented in the literature. These contain terms that take
into account the pertinent features of imbibition: non-locality and the
quenched noise that arises from the random environment, fluctuations of the
fluid flow and capillary forces. The theoretical progress has highlighted the
presence of intrinsic length-scales that invalidate scale invariance often
assumed to be present in kinetic roughening processes such as that of a
two-phase boundary in liquid penetration. Another important fact is that the
macroscopic fluid flow, the kinetic roughening properties, and the effective
noise in the problem are all coupled. Many possible deviations from simple
scaling behaviour exist, and we outline the experimental evidence. Finally,
prospects for further work, both theoretical and experimental, are discussed.Comment: Review article, to appear in Advances in Physics, 53 pages LaTe
First-in-human technique translation of oxygen-enhanced MRI to an MR Linac system in patients with head and neck cancer
BACKGROUND AND PURPOSE: Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system. MATERIALS AND METHODS: MRI sequences were developed in phantoms and 15 healthy participants. Next, 14 HNC patients (with 21 primary or local nodal tumours) were evaluated. Baseline tissue longitudinal relaxation time (T1) was measured alongside the change in 1/T1 (termed ÎR1) between air and oxygen gas breathing phases. We compared results from 1.5 T diagnostic MR and MR Linac systems. RESULTS: Baseline T1 had excellent repeatability in phantoms, healthy participants and patients on both systems. Cohort nasal concha oxygen-induced ÎR1 significantly increased (p < 0.0001) in healthy participants demonstrating OE-MRI feasibility. ÎR1 repeatability coefficients (RC) were 0.023-0.040 s-1 across both MR systems. The tumour ÎR1 RC was 0.013 s-1 and the within-subject coefficient of variation (wCV) was 25% on the diagnostic MR. Tumour ÎR1 RC was 0.020 s-1 and wCV was 33% on the MR Linac. ÎR1 magnitude and time-course trends were similar on both systems. CONCLUSION: We demonstrate first-in-human translation of volumetric, dynamic OE-MRI onto an MR Linac system, yielding repeatable hypoxia biomarkers. Data were equivalent on the diagnostic MR and MR Linac systems. OE-MRI has potential to guide future clinical trials of biology guided adaptive radiotherapy
Surface and Temporal Biosignatures
Recent discoveries of potentially habitable exoplanets have ignited the
prospect of spectroscopic investigations of exoplanet surfaces and atmospheres
for signs of life. This chapter provides an overview of potential surface and
temporal exoplanet biosignatures, reviewing Earth analogues and proposed
applications based on observations and models. The vegetation red-edge (VRE)
remains the most well-studied surface biosignature. Extensions of the VRE,
spectral "edges" produced in part by photosynthetic or nonphotosynthetic
pigments, may likewise present potential evidence of life. Polarization
signatures have the capacity to discriminate between biotic and abiotic "edge"
features in the face of false positives from band-gap generating material.
Temporal biosignatures -- modulations in measurable quantities such as gas
abundances (e.g., CO2), surface features, or emission of light (e.g.,
fluorescence, bioluminescence) that can be directly linked to the actions of a
biosphere -- are in general less well studied than surface or gaseous
biosignatures. However, remote observations of Earth's biosphere nonetheless
provide proofs of concept for these techniques and are reviewed here. Surface
and temporal biosignatures provide complementary information to gaseous
biosignatures, and while likely more challenging to observe, would contribute
information inaccessible from study of the time-averaged atmospheric
composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets.
Fixed figure conversion error
Intraventricular dyssynchrony in light chain amyloidosis: a new mechanism of systolic dysfunction assessed by 3-dimensional echocardiography
<p>Abstract</p> <p>Background</p> <p>Light chain amyloidosis (AL) is a rare but often fatal disease due to intractable heart failure. Amyloid deposition leads to diastolic dysfunction and often preserved ejection fraction. We hypothesize that AL is associated with regional systolic dyssynchrony. The aim is to compare left ventricular (LV) regional synchrony in AL subjects versus healthy controls using 16-segment dyssynchrony index measured from 3-dimension-al (3D) echocardiography.</p> <p>Methods</p> <p>Cardiac 3D echocardiography full volumes were acquired in 10 biopsy-proven AL subjects (60 ± 3 years, 5 females) and 10 healthy controls (52 ± 1 years, 5 females). The LV was subdivided into 16 segments and the time from end-diastole to the minimal systolic volume for each of the 16 segments was expressed as a percent of the cycle length. The standard deviations of these times provided a 16-segment dyssynchrony index (16-SD%). 16-SD% was compared between healthy and AL subjects.</p> <p>Results</p> <p>Left ventricular ejection fraction was comparable (control vs. AL: 62.4 ± 0.6 vs. 58.6 ± 2.8%, p = NS). 16-SD% was significantly higher in AL versus healthy subjects (5.93 ± 4.4 vs. 1.67 ± 0.87%, p = 0.003). 16-SD% correlated with left ventricular mass index (R 0.45, p = 0.04) but not to left ventricular ejection fraction.</p> <p>Conclusion</p> <p>Light chain amyloidosis is associated with left ventricular regional systolic dyssynchrony. Regional dyssynchrony may be an unrecognized mechanism of heart failure in AL subjects.</p
- âŠ