18 research outputs found

    Discovery of a Transiting Adolescent Sub-Neptune Exoplanet with K2

    Get PDF
    The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of known young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets with well-constrained ages, particularly those which are young, are useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or atmospheric photo-evaporation, among other mechanisms. Here we report the discovery of an adolescent transiting sub-Neptune from K2 photometry of the low-mass star K2-284. From multiple age indicators we estimate the age of the star to be 120 Myr, with a 68% confidence interval of 100-760 Myr. The size of K2-284 b (RPR_P = 2.8 ±\pm 0.1 R⊕R_\oplus) combined with its youth make it an intriguing case study for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.Comment: Accepted to AJ, 36 pages, 17 figures, 5 table

    Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. IV. Updated Properties for 86 Cool Dwarfs Observed during Campaigns 1–17

    Get PDF
    We present revised stellar properties for 172 K2 target stars that were identified as possible hosts of transiting planets during Campaigns 1–17. Using medium-resolution near-infrared spectra acquired with the NASA Infrared Telescope Facility/SpeX and Palomar/TripleSpec, we found that 86 of our targets were bona fide cool dwarfs, 74 were hotter dwarfs, and 12 were giants. Combining our spectroscopic metallicities with Gaia parallaxes and archival photometry, we derived photometric stellar parameters and compared them to our spectroscopic estimates. Although our spectroscopic and photometric radius and temperature estimates are consistent, our photometric mass estimates are systematically ΔM sstarf = 0.11 M ⊙ (34%) higher than our spectroscopic mass estimates for the least massive stars (M sstarf,phot < 0.4 M ⊙). Adopting the photometric parameters and comparing our results to parameters reported in the Ecliptic Plane Input Catalog, our revised stellar radii are ΔR sstarf = 0.15 R ⊙ (40%) larger, and our revised stellar effective temperatures are roughly ΔT eff = 65 K cooler. Correctly determining the properties of K2 target stars is essential for characterizing any associated planet candidates, estimating the planet search sensitivity, and calculating planet occurrence rates. Even though Gaia parallaxes have increased the power of photometric surveys, spectroscopic characterization remains essential for determining stellar metallicities and investigating correlations between stellar metallicity and planetary properties

    K2-136: A Binary System in the Hyades Cluster Hosting a Neptune-sized Planet

    Get PDF
    We report the discovery of a Neptune-size planet (R_p = 3.0 R⊕) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 au. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hrs. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. K2-136A c is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625–750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set constraints on the formation and evolution of planetary systems

    K2-288Bb: A Small Temperate Planet in a Low-mass Binary System Discovered by Citizen Scientists

    Get PDF
    Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Observations from the Kepler and K2 missions have provided the astronomical community with unprecedented amounts of data to search for transiting exoplanets and other astrophysical phenomena. Here, we present K2-288, a low-mass binary system (M2.0 ± 1.0; M3.0 ± 1.0) hosting a small (R p = 1.9 R ⊕), temperate (T eq = 226 K) planet observed in K2 Campaign 4. The candidate was first identified by citizen scientists using Exoplanet Explorers hosted on the Zooniverse platform. Follow-up observations and detailed analyses validate the planet and indicate that it likely orbits the secondary star on a 31.39-day period. This orbit places K2-288Bb in or near the habitable zone of its low-mass host star. K2-288Bb resides in a system with a unique architecture, as it orbits at >0.1 au from one component in a moderate separation binary (a proj ~ 55 au), and further follow-up may provide insight into its formation and evolution. Additionally, its estimated size straddles the observed gap in the planet radius distribution. Planets of this size occur less frequently and may be in a transient phase of radius evolution. K2-288 is the third transiting planet system identified by the Exoplanet Explorers program and its discovery exemplifies the value of citizen science in the era of Kepler, K2, and the Transiting Exoplanet Survey Satellite

    Planetary Candidates from K2 Campaign 16

    Get PDF
    Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in "forward-facing" mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry alone. Our catalog includes 30 high-quality planet candidates (showing no signs of being non-planetary in nature), 48 more ambiguous events that may be either planets or false positives, 164 eclipsing binaries, and 231 other regularly periodic variable sources. We have released light curves for all targets in C16, and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V=6.9, K=5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a 2.56±0.18 R⊕2.56 \pm 0.18 \ R_\oplus planet and would likely be a favorable target for radial velocity characterization. This paper is intended as a rapid release of planet candidates, eclipsing binaries and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow-up.Comment: 19 pages, 7 figures, 5 tables, accepted for publication in A

    Two warm, low-density sub-Jovian planets orbiting bright stars in K2 campaigns 13 and 14

    Get PDF
    We report the discovery of two planets transiting the bright stars HD 89345 (EPIC 248777106, V=9.376V=9.376, K=7.721K=7.721) in K2 Campaign 14 and HD 286123 (EPIC 247098361, V=9.822V=9.822, K=8.434K=8.434) in K2 Campaign 13. Both stars are G-type stars, one of which is at or near the end of its main sequence lifetime, and the other that is just over halfway through its main sequence lifetime. HD 89345 hosts a warm sub-Saturn (0.66 RJR_J, 0.11 MJM_J, Teq=1100T_\mathrm{eq}=1100 K) in an 11.81-day orbit. The planet is similar in size to WASP-107b, which falls in the transition region between ice giants and gas giants. HD 286123 hosts a Jupiter-sized, low-mass planet (1.06 RJR_J, 0.39 MJM_J, Teq=1000T_\mathrm{eq}=1000 K) in an 11.17-day, mildly eccentric orbit, with e=0.255±0.035e=0.255\pm0.035. Given that they orbit relatively evolved main-sequence stars and have orbital periods longer than 10 days, these planets are interesting candidates for studies of gas planet evolution, migration, and (potentially) re-inflation. Both planets have spent their entire lifetimes near the proposed stellar irradiation threshold at which giant planets become inflated, and neither shows any sign of radius inflation. They probe the regime where inflation begins to become noticeable and are valuable in constraining planet inflation models. In addition, the brightness of the host stars, combined with large atmospheric scale heights of the planets, makes these two systems favorable targets for transit spectroscopy to study their atmospheres and perhaps provide insight into the physical mechanisms that lead to inflated hot Jupiters.Comment: 16 pages, 12 figures; accepted for publication in A

    K2-136: A Binary System in the Hyades Cluster Hosting a Neptune-sized Planet

    Get PDF
    We report the discovery of a Neptune-size planet (R_p = 3.0 R⊕) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 au. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hrs. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. K2-136A c is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625–750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set constraints on the formation and evolution of planetary systems

    Planetary Candidates from K2 Campaign 16

    Get PDF
    Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in "forward-facing" mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry alone. Our catalog includes 30 high-quality planet candidates (showing no signs of being non-planetary in nature), 48 more ambiguous events that may be either planets or false positives, 164 eclipsing binaries, and 231 other regularly periodic variable sources. We have released light curves for all targets in C16 and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V = 6.9, K = 5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a 2.56 ± 0.18 R_⊕ planet and would likely be a favorable target for radial velocity characterization. This paper is intended as a rapid release of planet candidates, eclipsing binaries, and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow up
    corecore