7 research outputs found

    Molecular modeling of organic coated sea-salt particles

    No full text
    International audienc

    Water-Induced Organization of Palmitic Acid at the Surface of a Model Sea Salt Particle: A Molecular Dynamics Study

    No full text
    International audienceMarine aerosols represent the most important aerosol fraction in the Earth atmosphere. Field studies have revealed that fatty acids form an organic film at the surface of sea salt particles, altering the properties of the aerosol. By means of classical molecular dynamics simulation, the surface organization of palmitic acid (PA) on a salt surface, NaCl, has been investigated at two different temperatures, 235 and 300 K, and with relative humidity varying from 0 to 40%. Calculations show that water promotes the formation of well-ordered close-packed PA islands. As a result, some area of the salt may be covered by water only or by PA molecules supported by water. Depending on the relative humidity, the hydrophilic/hydrophobic character of the sea salt surface varies. This heterogeneous coating gives rise locally to very different surface properties and hence may affect the transfer of gas phase species to the salt and their reactivity

    Photodissociation of a HCl molecule adsorbed on ice at T=210K

    No full text
    International audienceThis theoretical work concerns the study of the photodissociation of a HCl molecule adsorbed on an ice surface at T = 210 K. Temperature induced disorder is taken into account by a statistics over several configurations extracted from a classical molecular dynamics (MD) simulation. For each configuration, 3D quantum dynamics of the hydrogen photofragment is investigated using the multi-configuration time-dependent Hartree (MCTDH) method. The absorption spectrum at 210 K is obtained by an average over the spectra calculated for each configuration. The surface disorder results in a smoothing of the interferences structures that appear for some given orientations of HCl depending on the surrounding water molecules orientations

    Tunable High Spatio-Spectral Purity Undulator Radiation from a Transported Laser Plasma Accelerated Electron Beam

    No full text
    International audienceUndulator based synchrotron light sources and Free Electron Lasers (FELs) are valuable modern probes of matter with high temporal and spatial resolution. Laser Plasma Accelerators (LPAs), delivering GeV electron beams in few centimeters, are good candidates for future compact light sources. However the barriers set by the large energy spread, divergence and shot-to-shot fluctuations require a specific transport line, to shape the electron beam phase space for achieving ultrashort undulator synchrotron radiation suitable for users and even for achieving FEL amplification. Proof-of-principle LPA based undulator emission, with strong electron focusing or transport, does not yet exhibit the full specific radiation properties. We report on the generation of undulator radiation with an LPA beam based manipulation in a dedicated transport line with versatile properties. After evidencing the specific spatio-spectral signature, we tune the resonant wavelength within 200–300 nm by modification of the electron beam energy and the undulator field. We achieve a wavelength stability of 2.6%. We demonstrate that we can control the spatio-spectral purity and spectral brightness by reducing the energy range inside the chicane. We have also observed the second harmonic emission of the undulator

    Seeded free-electron laser driven by a compact laser plasma accelerator

    No full text
    International audienceAbstract Free-electron lasers generate high-brilliance coherent radiation at wavelengths spanning from the infrared to the X-ray domains. The recent development of short-wavelength seeded free-electron lasers now allows for unprecedented levels of control on longitudinal coherence, opening new scientific avenues such as ultra-fast dynamics on complex systems and X-ray nonlinear optics. Although those devices rely on state-of-the-art large-scale accelerators, advancements on laser-plasma accelerators, which harness gigavolt-per-centimetre accelerating fields, showcase a promising technology as compact drivers for free-electron lasers. Using such footprint-reduced accelerators, exponential amplification of a shot-noise type of radiation in a self-amplified spontaneous emission configuration was recently achieved. However, employing this compact approach for the delivery of temporally coherent pulses in a controlled manner has remained a major challenge. Here we present the experimental demonstration of a laser-plasma accelerator-driven free-electron laser in a seeded configuration, where control over the radiation wavelength is accomplished. Furthermore, the appearance of interference fringes, resulting from the interaction between the phase-locked emitted radiation and the seed, confirms longitudinal coherence. Building on our scientific achievements, we anticipate a navigable pathway to extreme-ultraviolet wavelengths, paving the way towards smaller-scale free-electron lasers, unique tools for a multitude of applications in industry, laboratories and universities

    Seeded free-electron laser driven by a compact laser plasma accelerator

    No full text
    Free-electron lasers generate high-brilliance coherent radiation at wavelengths spanning from the infrared to the X-ray domains. The recent development of short-wavelength seeded free-electron lasers now allows for unprecedented levels of control on longitudinal coherence[1], opening new scientific avenues as ultra-fast dynamics on complex systems and X-ray nonlinear optics. While those devices rely on state-of-the-art large-scale accelerators, advancements on laser-plasma accelerators, which harness giga-volt-per-centimeter accelerating fields, showcase a promising technology as compact drivers for free-electron lasers. Using such miniaturized accelerators, exponential amplification of a shot-noise type of radiation in a self-amplified spontaneous emission configuration was recently achieved [2]. However, employing this compact approach for the delivery of temporally coherent pulses in a controlled manner remained a major challenge. Here, we present the experimental demonstration of a laser-plasma accelerator driven free-electron laser in a seeded configuration, where control over the radiation wavelength is accomplished. Furthermore, the appearance of interference fringes, resulting from the interaction between the phase-locked emitted radiation and the seed, confirms longitudinal coherence. Building on our scientific achievements, we anticipate a straightforward scaling to extreme-ultraviolet wavelengths, paving the way towards university-scale free-electron lasers, unique tools for a multitude of applications. [1] Meyer, M. FELs of europe: Whitebook on science with free electron lasers 8–19 (2016). [2] Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator
    corecore