218 research outputs found

    Mixed-effects models for joint modeling of sequence data in longitudinal studies

    Get PDF
    In this paper, we propose a novel mixed-effects model for longitudinal changes of systolic blood pressure (SBP) over time that can estimate the joint effect of multiple sequence variants on SBP after accounting for familial correlation and the time dependencies within individuals. First we carried out agenome-wide association study (GWAS) using chromosome 3 single-nucleotide polymorphisms(SNPs) to identify regions associated with SBP levels. In a second step, we examined the sequence data to fine-map additional variants in these regions. Four SNPs from two intergenic regions (PLXNA1-TPRA1, BPESC1-PISTR1) and one gene (NLGN1) were detected to be significantly associated with SBP after adjusting for multiple testing. These SNPs were used to capture the multilocus genotype diversity in the regions. The multilocus genotypes derived from these four variants were then treated as random effects in the mixed-effects model, and the corresponding confidence intervals (Cis) were built to assess the significance of the joint effect of the sequence variants on SBP. We found that multilocus genotypes (GG,TT,AG,GG), (GG,TT,GG,GG), and (GG,TT,AA,AG) are associated with higher SBPand (GG,CT,AA,AA), (AA,TT,AA,AA), and (AG,CT,AA,AG) are associated with lower SBP. The linear mixed-effects models provide a powerful tool for GWAS and the analysis of joint modeling of multilocus genotypes

    Comparison of genotype- and haplotype-based approaches for fine-mapping of alcohol dependence using COGA data

    Get PDF
    It is generally assumed that the detection of disease susceptibility genes via fine-mapping association study is facilitated by consideration of marker haplotypes. In this study, we compared the performance of genotype-based and haplotype-based association studies using the Collaborative Study of Genetics of Alcoholism dataset, on several chromosomal regions showing evidence for linkage with ALDX1. After correction for multiple testing, the most significant results were observed with the genotype-based analyses on two regions of chromosomes 2 and 7. Interestingly, the analyses results from this dataset showed that there was no advantage of the haplotype-based analyses over genotype-based (single-locus) analyses. However, caution should be taken when generalizing these results to other chromosomal regions or to other populations

    Multilevel modeling for the analysis of longitudinal blood pressure data in the Framingham Heart Study pedigrees

    Get PDF
    BACKGROUND: The data arising from a longitudinal familial study have a complex correlation structure that cannot be modeled using classical methods for the analysis of familial data at a single time point. METHODS: To fit the longitudinal systolic blood pressure (SBP) pedigree data arising from the Framingham Heart Study, we proposed to use multilevel modeling. That approach was used to distinguish multiple levels of information with individual repeated measurements (Level 1) being made within individuals (Level 2), and individuals clustered within pedigrees (Level 3). Residuals from the subject-specific and pedigree-specific regression models were summed both for the mean SBP and slope of SBP change over time, in order to define two new outcomes that were then used in a genome-wide linkage analysis. RESULTS: Evidence for linkage for the two outcomes (mean SBP and slope) was found in several chromosomal regions with a maximum LOD score of 3.6 on chromosome 8 and 3.5 on chromosome 17 for the mean SBP, and 2.5 on chromosome 1 for SBP slope. However, the linkage on chromosome 8 was only detected when the sample was restricted to subjects between age 25 and 75 and with at least four exams (Cohort 1) or 3 exams (Cohort 2). DISCUSSION: Multilevel modeling is a powerful approach to detect genes involved in complex traits when longitudinal data are available. It allows for complex hierarchical data structure to be taken into account and therefore, a better partitioning of random within-individual variation from other sources of variability (genetic or nongenetic)

    FamEvent: An R Package for Generating and Modeling Time-to-Event Data in Family Designs

    Get PDF
    FamEvent is a comprehensive R package for simulating and modeling age-at-disease onset in families carrying a rare gene mutation. The package can simulate complex family data for variable time-to-event outcomes under three common family study designs (population, high-risk clinic and multi-stage) with various levels of missing genetic information among family members. Residual familial correlation can be induced through the inclusion of a frailty term or a second gene. Disease-gene carrier probabilities are evaluated assuming Mendelian transmission or empirically from the data. When genetic information on the disease gene is missing, an expectation-maximization algorithm is employed to calculate the carrier probabilities. Penetrance model functions with ascertainment correction adapted to the sampling design provide age-specific cumulative disease risks by sex, mutation status, and other covariates for simulated data as well as real data analysis. Robust standard errors and 95% confidence intervals are available for these estimates. Plots of pedigrees and penetrance functions based on the fitted model provide graphical displays to evaluate and summarize the models

    Using an age-at-onset phenotype with interval censoring to compare methods of segregation and linkage analysis in a candidate region for elevated systolic blood pressure

    Get PDF
    BACKGROUND: Genetic studies of complex disorders such as hypertension often utilize families selected for this outcome, usually with information obtained at a single time point. Since age-at-onset for diagnosed hypertension can vary substantially between individuals, a phenotype based on long-term follow up in unselected families can yield valuable insights into this disorder for the general population. METHODS: Genetic analyses were conducted using 2884 individuals from the largest 330 families of the Framingham Heart Study. A longitudinal phenotype was constructed using the age at an examination when systolic blood pressure (SBP) first exceeds 139 mm Hg. An interval for age-at-onset was created, since the exact time of onset was unknown. Time-fixed (sex, study cohort) and time-varying (body mass index, daily cigarette and alcohol consumption) explanatory variables were included. RESULTS: Segregation analysis for a major gene effect demonstrated that the major gene effect parameter was sensitive to the choice for age-at-onset. Linkage analyses for age-at-onset were conducted using 1537 individuals in 52 families. Evidence for putative genes identified on chromosome 17 in a previous linkage study using a quantitative SBP phenotype for these data was not confirmed. CONCLUSIONS: Interval censoring for age-at-onset should not be ignored. Further research is needed to explain the inconsistent segregation results between the different age-at-onset models (regressive threshold and proportional hazards) as well as the inconsistent linkage results between the longitudinal phenotypes (age-at-onset and quantitative)

    Water quality assessment by means of HFNI valvometry and high-frequency data modeling

    No full text
    International audienceThe high-frequency measurements of valve activity in bivalves (e.g., valvometry) over a long period of time and in various environmental conditions allow a very accurate study of their behaviors as well as a global analysis of possible perturbations due to the environment. Valvom- etry uses the bivalve's ability to close its shell when exposed to a contaminant or other abnormal environmental conditions as an alarm to indicate possible perturbations in the environment. The modeling of such high-frequency serial valvom- etry data is statistically challenging, and here, a nonparametric approach based on kernel estima- tion is proposed. This method has the advantage of summarizing complex data into a simple den- sity profile obtained from each animal at every 24-h period to ultimately make inference about time effect and external conditions on this profile. The statistical properties of the estimator are pre- sented. Through an application to a sample of 16 oysters living in the Bay of Arcachon (France), we demonstrate that this method can be used to first estimate the normal biological rhythms of permanently immersed oysters and second to de- tect perturbations of these rhythms due to changes in their environment. We anticipate that this ap- proach could have an important contribution to the survey of aquatic systems
    • …
    corecore