473 research outputs found

    B Cell-Specific S1PR1 Deficiency Blocks Prion Dissemination between Secondary Lymphoid Organs

    Get PDF
    Many prion diseases are peripherally acquired (eg. orally or via lesions to skin or mucous membranes). After peripheral exposure prions replicate first upon follicular dendritic cells (FDC) in the draining lymphoid tissue before infecting the brain. However, after replication upon FDC within the draining lymphoid tissue, prions are subsequently propagated to most non-draining secondary lymphoid organs (SLO) including the spleen by a previously underdetermined mechanism. The germinal centres in which FDC are situated produce a population of B cells which can recirculate between SLO. We therefore reasoned that B cells were ideal candidates by which prion dissemination between SLO may occur. Sphingosine 1-phosphate receptor 1 (S1PR1) stimulation controls the egress of T and B cells from SLO. S1PR1 signalling-blockade sequesters lymphocytes within SLO resulting in lymphopenia in the blood and lymph. We show that in mice treated with the S1PR modulator FTY720, or with S1PR1-deficiency restricted to B cells, the dissemination of prions from the draining lymph node to non-draining SLO is blocked. These data suggest that B cells interacting with and acquiring surface proteins from FDC, and recirculating between SLO via the blood and lymph, mediate the initial propagation of prions from the draining lymphoid tissue to peripheral tissues

    Curvature decomposition of G_2 manifolds

    Full text link
    Explicit formulas for the G2G_2-components of the Riemannian curvature tensor on a manifold with a G2G_2 structure are given in terms of Ricci contractions. We define a conformally invariant Ricci-type tensor that determines the 27-dimensional part of the Weyl tensor and show that its vanishing on compact G2G_2 manifold with closed fundamental form forces the three-form to be parallel. A topological obstruction for the existence of a G2G_2 structure with closed fundamental form is obtained in terms of the integral norms of the curvature components. We produce integral inequalities for closed G2G_2 manifold and investigate limiting cases. We make a study of warped products and cohomogeneity-one G2G_2 manifolds. As a consequence every Fern\'andez-Gray type of G2G_2 structure whose scalar curvature vanishes may be realized such that the metric has holonomy contained in G2G_2.Comment: LaTeX 2e, 26 pages, 2 tables. Changes in version 2: shortened, reorganized, misprints corrected, several remarks and new introduction. A formula in the proof of Theorem 1.2a has been corrected. Submitte

    A Map of the Universe

    Full text link
    We have produced a new conformal map of the universe illustrating recent discoveries, ranging from Kuiper belt objects in the Solar system, to the galaxies and quasars from the Sloan Digital Sky Survey. This map projection, based on the logarithm map of the complex plane, preserves shapes locally, and yet is able to display the entire range of astronomical scales from the Earth's neighborhood to the cosmic microwave background. The conformal nature of the projection, preserving shapes locally, may be of particular use for analyzing large scale structure. Prominent in the map is a Sloan Great Wall of galaxies 1.37 billion light years long, 80% longer than the Great Wall discovered by Geller and Huchra and therefore the largest observed structure in the universe.Comment: Figure 8, and additional material accessible on the web at: http://www.astro.princeton.edu/~mjuric/universe

    A Spectroscopic Survey of Faint Quasars in the SDSS Deep Stripe: I. Preliminary Results from the Co-added Catalog

    Full text link
    In this paper we present the first results of a deep spectroscopic survey of faint quasars in the Sloan Digital Sky Survey (SDSS) Southern Survey, a deep survey carried out by repeatedly imaging a 270 deg^2 area. Quasar candidates were selected from the deep data with good completeness over 0<z<5, and 2 to 3 magnitudes fainter than the SDSS main survey. Spectroscopic follow-up was carried out on the 6.5m MMT with Hectospec. The preliminary sample of this SDSS faint quasar survey (hereafter SFQS) covers ~ 3.9 deg^2, contains 414 quasars, and reaches g=22.5. The overall selection efficiency is ~ 66% (~ 80% at g<21.5); the efficiency in the most difficult redshift range (2<z<3) is better than 40%. We use the 1/V_{a} method to derive a binned estimate of the quasar luminosity function (QLF) and model the QLF using maximum likelihood analysis. The best model fits confirm previous results showing that the QLF has steep slopes at the bright end and much flatter slopes (-1.25 at z<2.0 and -1.55 at z>2.0) at the faint end, indicating a break in the QLF slope. Using a luminosity-dependent density evolution model, we find that the quasar density at M_{g}<-22.5 peaks at z~2, which is later in cosmic time than the peak of z~2.5 found from surveys of more luminous objects. The SFQS QLF is consistent with the results of the 2dF QSO Redshift Survey, the SDSS, and the 2dF-SDSS LRG and QSO Survey, but probes fainter quasars. We plan to obtain more quasars from future observations and establish a complete faint quasar sample with more than 1000 objects over 10 deg^2.Comment: 25 pages, 13 figures, accepted for publication in A

    Characteristic QSO Accretion Disk Temperatures from Spectroscopic Continuum Variability

    Full text link
    Using Sloan Digital Sky Survey (SDSS) quasar spectra taken at multiple epochs, we find that the composite flux density differences in the rest frame wavelength range 1300-6000 AA can be fit by a standard thermal accretion disk model where the accretion rate has changed from one epoch to the next (without considering additional continuum emission components). The fit to the composite residual has two free parameters: a normalizing constant and the average characteristic temperature Tˉ\bar{T}^*. In turn the characteristic temperature is dependent on the ratio of the mass accretion rate to the square of the black hole mass. We therefore conclude that most of the UV/optical variability may be due to processes involving the disk, and thus that a significant fraction of the UV/optical spectrum may come directly from the disk.Comment: 31 pages, 8 figure

    Sloan Digital Sky Survey III Photometric Quasar Clustering: Probing the Initial Conditions of the Universe using the Largest Volume

    Full text link
    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z = 0.5 and z = 2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans ~11,000 square degrees and probes a volume of 80(Gpc/h)^3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~25% over a bin width of l ~10 - 15 on scales corresponding to matter-radiation equality and larger (l ~ 2 - 30). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+/-154 (1\sigma error). [Abridged]Comment: 35 pages, 15 figure

    Quasars and the Big Blue Bump

    Full text link
    We investigate the ultraviolet-to-optical spectral energy distributions (SEDs) of 17 active galactic nuclei (AGNs) using quasi-simultaneous spectrophotometry spanning 900-9000 Angstrom (rest frame). We employ data from the Far Ultraviolet Spectroscopic Explorer (FUSE), the Hubble Space Telescope (HST), and the 2.1-meter telescope at Kitt Peak National Observatory (KPNO). Taking advantage of the short-wavelength coverage, we are able to study the so-called "big blue bump," the region where the energy output peaks, in detail. Most objects exhibit a spectral break around 1100 Angstrom. Although this result is formally associated with large uncertainty for some objects, there is strong evidence in the data that the far-ultraviolet spectral region is below the extrapolation of the near-ultraviolet-optical slope, indicating a spectral break around 1100 Angstrom. We compare the behavior of our sample to those of non-LTE thin-disk models covering a range in black-hole mass, Eddington ratio, disk inclination, and other parameters. The distribution of ultraviolet-optical spectral indices redward of the break, and far-ultraviolet indices shortward of the break, are in rough agreement with the models. However, we do not see a correlation between the far-ultraviolet spectral index and the black hole mass, as seen in some accretion disk models. We argue that the observed spectral break is intrinsic to AGNs, although intrinsic reddening as well as Comptonization can strongly affect the far-ultraviolet spectral index. We make our data available online in digital format.Comment: 32 pages (10pt), 12 figures. Accepted for publication in Ap
    corecore