122 research outputs found

    Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Roseobacter litoralis </it>OCh149, the type species of the genus, and <it>Roseobacter denitrificans </it>OCh114 were the first described organisms of the <it>Roseobacter </it>clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis.</p> <p>Results</p> <p>The genome of <it>R. litoralis </it>OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for <it>R. litoralis</it>, 1122 (24.7%) are not present in the genome of <it>R. denitrificans</it>. Many of the unique genes of <it>R. litoralis </it>are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of <it>R. denitrificans</it>. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of <it>R. litoralis</it>. In contrast to <it>R. denitrificans</it>, the photosynthesis genes of <it>R. litoralis </it>are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the <it>Roseobacter </it>clade revealed several genomic regions that were only conserved in the two <it>Roseobacter </it>species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in <it>R. litoralis </it>differed from the phenotype.</p> <p>Conclusions</p> <p>The genomic differences between the two <it>Roseobacter </it>species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of <it>R. denitrifcans </it>(pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of <it>R. litoralis </it>is probably regulated by nutrient availability.</p

    Phylogenomic Analysis of Marine Roseobacters

    Get PDF
    Background: Members of the Roseobacter clade which play a key role in the biogeochemical cycles of the ocean are diverse and abundant, comprising 10–25 % of the bacterioplankton in most marine surface waters. The rapid accumulation of whole-genome sequence data for the Roseobacter clade allows us to obtain a clearer picture of its evolution. Methodology/Principal Findings: In this study about 1,200 likely orthologous protein families were identified from 17 Roseobacter bacteria genomes. Functional annotations for these genes are provided by iProClass. Phylogenetic trees were constructed for each gene using maximum likelihood (ML) and neighbor joining (NJ). Putative organismal phylogenetic trees were built with phylogenomic methods. These trees were compared and analyzed using principal coordinates analysis (PCoA), approximately unbiased (AU) and Shimodaira–Hasegawa (SH) tests. A core set of 694 genes with vertical descent signal that are resistant to horizontal gene transfer (HGT) is used to reconstruct a robust organismal phylogeny. In addition, we also discovered the most likely 109 HGT genes. The core set contains genes that encode ribosomal apparatus, ABC transporters and chaperones often found in the environmental metagenomic and metatranscriptomic data. These genes in the core set are spread out uniformly among the various functional classes and biological processes. Conclusions/Significance: Here we report a new multigene-derived phylogenetic tree of the Roseobacter clade. Of particular interest is the HGT of eleven genes involved in vitamin B12 synthesis as well as key enzynmes fo

    The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov

    Get PDF
    BACKGROUND: There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. METHODOLOGY/PRINCIPAL FINDINGS: Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71(T). Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71(T) cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3-2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71(T) could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. CONCLUSIONS/SIGNIFICANCE: In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71(T) we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique phenotype within the class Gammaproteobacteria, so that it is justified to propose a new genus and species, Congregibacter litoralis gen. nov, sp. nov., represented by the type strain KT71(T) ( = DSM 17192(T) = NBRC 104960(T))

    Multidimensional access methods

    Full text link

    Long-term safety and efficacy of Eculizumab in Aquaporin-4 IgG-positive NMOSD

    Get PDF
    Objective During PREVENT (NCT01892345), eculizumab significantly reduced relapse risk versus placebo in patients with aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder (AQP4-IgG+ NMOSD). We report an interim analysis of PREVENT's ongoing open-label extension (OLE; NCT02003144) evaluating eculizumab's long-term safety and efficacy. Methods Patients who completed PREVENT could enroll in the OLE to receive eculizumab (maintenance dose = 1,200 mg/2 weeks, after a blinded induction phase). Safety and efficacy data from PREVENT and its OLE (interim data cut, July 31, 2019) were combined for this analysis. Results Across PREVENT and the OLE, 137 patients received eculizumab and were monitored for a median (range) of 133.3 weeks (5.1–276.9 weeks), for a combined total of 362.3 patient-years (PY). Treatment-related adverse event (AE) and serious adverse event (SAE) rates were 183.5 in 100 PY and 8.6 in 100 PY, respectively. Serious infection rates were 10.2 in 100 PY in eculizumab-treated patients versus 15.1 in 100 PY in the PREVENT placebo group. No patient developed a meningococcal infection. At 192 weeks (3.7 years), 94.4% (95% confidence interval [CI], 88.6–97.3) of patients remained adjudicated relapse-free. The adjudicated annualized relapse rate was 0.025 (95% CI = 0.013–0.048) in all eculizumab-treated patients versus 0.350 (95% CI = 0.199–0.616) in the PREVENT placebo group. During the OLE, 37% of patients (44 of 119 patients) stopped or decreased background immunosuppressive therapy use. Interpretation This analysis demonstrates that eculizumab's long-term safety profile in NMOSD is consistent with its established profile across other indications. This analysis also demonstrated the sustained ability of long-term eculizumab treatment to reduce relapse risk in patients with AQP4-IgG+ NMOSD. ANN NEUROL 2021;89:1088–109

    Macroprudential Policy: A Blessing or a Curse?

    Full text link
    • …
    corecore