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Abstract. In secondary uses of data, access to real data is problematic due to data 
being non-existent, incomplete, or avoiding privacy and confidentiality breaches. 
Synthetic data (SD) are best replacements for real data but must be verifiably 
realistic.  There is little or no investigation into systematically achieving realism 
in SD. This work investigates this problem, and contributes the ATEN framework, 
which incorporates three component approaches: (1) THOTH for synthetic data 
generation (SDG); (2) RA for characterising realism is SD, and (3) HORUS for 
validating realism in SD. The framework is found promising after its use in gen-
erating the realistic synthetic EHR (RS-EHR) for labour and birth.  This frame-
work is significant in guaranteeing realism in SDG projects. Future efforts focus 
on further validation of ATEN in a controlled multi-stream SDG process. 
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1 Introduction 

The McGaw-Hill dictionary of Scientific and Technical Terms describes Synthetic Data 
as any production data applicable to a given situation that are not obtained by direct 
measurement [1]. Prior to [2] the domain of statistics, especially population statistics, 
primarily viewed synthetic data to be larger datasets that result from merging two or 
more smaller datasets [3, 4]. The earliest direct reference to synthetic data is a 1971 
article describing creation of tables of synthetic data for use in testing, modifying, and 
solving problems with marketing data [5]. Other works present methods for creating 
fully synthetic data based on observed statistics [6, 7]; predicting and testing observa-
tional outcomes [8]; and generation driven by probability models for use in simulations 
[9]; and forecasting [10]. The  reasons for generating synthetic data include software 
testing [11-14], population synthesis [15], hypotheses testing or generation of seed data 
for simulations [16, 17]. Recently, the major reason for generating synthetic data is 
limiting the release of confidential or personally identifiable information inherent to the 
use of real data sources [12, 18-20]. Some synthetic data generation (SDG) approaches 
use real data either directly, or as seed data in their SDG methods [11, 21, 22]. Caution 
should apply to release of such synthetic datasets as a poorly designed or inappropriate 
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model can still carry the risk of exposing confidential or personally identifiable infor-
mation. Most contemporary research works have focused heavily on data anonymiza-
tion, that is, isolating and replacing personally identifiable data with the concomitant 
goal of maintaining integrity of the data that an organisation may wish, or be required, 
to publish [23]. Anonymization has been dogged by modern methods for re-identifica-
tion of anonymised data using a person’s linkages to publicly available personal infor-
mation sources, such as the electoral roll and newspaper articles [24-26]. As a result, 
some SDG methods also risk suffering inverse methods and re-identification attacks 
that ultimately breach personal privacy. 

It is not enough to generate random data and hope it will be suitable to the purpose 
for which it will be used [27]. The data values may be required to fall within a defined 
set of constraints. For example, the heart rate should be a numerical value that falls 
within healthy resting (60 – 100), exercising (100 - 160) or disease state (40 – 60 or 
160+) ranges. Some projects require increasingly more complicated datasets where not 
only the values of single attributes must be valid, but all values and interrelationships 
must be indistinguishable from observed data [28, 29]. This is where the problem of 
realism becomes imperative, yet it remains unexplored in current SDG literature [30]. 
The common sense implication of the term realistic is as [31] succinctly puts it: syn-
thetic data that becomes “sufficient to replace real data”. The property of realism 
brings a greater degree of accuracy, reliability, effectiveness, credibility and validity 
[22].  Most researchers recognise the need for realism [18, 22, 31], however many leave 
realism unexplored in their works with only two authors giving some attention to it [18, 
19]. In both cases this was vague and limited only to hinting that the aim of realism was 
that the synthetic data should be a representative replacement for real data [19], and 
comparably correct in size and distribution [18]. Neither handled validation of realism 
in the synthetic data they created. All this lack of research attention makes it difficult 
to imbue realism into SDG methods, and to verify success in doing so. Realism should 
only be asserted if it has been verified [32, 33]. Scientific endeavours should always be 
concerned with testing and verification, yet few published approaches present system-
atic ways for validation [34, 35]. We find many SDG methods that claim success in the 
absence of a systematic ways of scientific validation [13, 36-38]. Some form of valida-
tion is necessary to support claims for realism in resulting synthetic data [32, 36, 39]. 
Otherwise, reliability of the approach must be questioned [40]. This work addressed 
these challenges and hereby presents the ATEN framework that allows realism to be 
inherent in SDG methods while also incorporating validation of realism in the resulting 
synthetic data, 

The rest of this chapter is organised as follows: First, a review of related works fo-
cusing on SDG methods and realism is presented. Second, the ATEN framework and 
its component approaches, namely, THOTH, RA and HORUS, are covered in detail. 
Third, the ATEN framework is evaluated by applying it to the case of generating the 
synthetic electronic healthcare record (EHR) for labour and births. Fourth and finally, 
the chapter is concluded and summarised. 
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2 Related Works 

A literature search was conducted to identify works describing methods or approaches 
for synthetic data generation (n = 7,746). This collection was reduced to works that also 
used the terms realistic (n = 290) or realism (n = 6) in describing either the need or 
purpose for synthetic data, their method, or the resulting synthetic dataset. The resulting 
collection included works that identified realism as a primary concern in the generation 
of synthetic data generally [13, 22, 41], or that discussed developing synthetic data that 
would be sufficient to replace, or be representative of, real data [12, 19, 31, 42]. Due to 
the low number of works that identified realism as a factor in synthetic data, a random 
selection of excluded works was included. This review found that one third of SDG 
articles focused on common goals, namely, authenticity [11], accuracy with respect to 
real structures [21], and  the replacement of real data [43]. A key observation is the 
conspicuous absence, in the literature, of an investigation of realism for synthetic data, 
along with the lack of rigorous explanation of the approaches used to produce what 
authors claim to have been realistic datasets. In the absence of a clear definition and 
framework for realism in the context of SDG, any process seeking to verify and validate 
realism in synthetic data is severely challenged. 

Works in the literature present common narrative for describing their SDG problem 
justification, operational method, and claimed results. This narrative consists of a com-
mon sequence of themes, each presented with two components. The themes are pre-
sented in Table 1. For the justification theme, research challenges include limited 
available data [44, 45] and privacy protection [38, 43]. Uses include testing of learning 
algorithms [44], enabling release of data [43], and prediction [38]. The operation 
theme includes SDG inputs such as network structures [44], observational statistics 
[45], and configuration files [38]. Methods ranged from random selection [44] and 
change behaviour modelling [38], to stochastic simulation using Markov models [45]. 
The result theme covers actions such as the use of benchmark and performance test 
simulation [44], comparative graphs [45], and performance analysis [46] used to assess 
published SDG methods. Resemblance to real networks [44], model advantages and 
capabilities [45] and likeness of the synthetic data to the synthetic scenario [38] were 
all reasons claimed by authors for claiming their SDG method was promising or suc-
cessful. 

Table 1. The common SDG narrative. 

Narrative Themes Narrative Components 
Justification It is difficult because of [some difficulty] to get real data for 

[some use], so we developed a new method to generate syn-
thetic data for this purpose. 

Operation Our method uses [some input] to generate the synthetic data 
using [some method]. 

Result We performed [some action] and believe that the synthetic 
data created by our method is promising for [some reason]. 

SDG approaches set the goal of simply producing synthetic data that is a suitable 
replacement for real data. The focus is heavily weighted toward the outcome, the syn-
thetic data. Validation of realistic aspects of synthetic data tended to be absent or sin-
gular or simplistic, ranging from direct comparisons between either the entire dataset 
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or fields within the synthetic data to observations drawn from the real data [22], or  
graphical and statistical comparisons between the two [21, 45, 47]. The majority did 
not discuss validation at all [37, 48, 49].  Disclosure of the validation approach in re-
search work completes and improves understandability of their work. It also allow re-
searchers to adequately assess whether or not a project met its goal; and the success 
claimed is truly justified [50]. This ensures that SDG experiments can be independently 
verified to the same standard as other scientific endeavours. 

3 ATEN: The framework for realistic synthetic data generation  

It is common to see methodologies with multiple separate, combined, or sequential 
components presented as a framework [51]. This section presents the ATEN framework 
shown in Figure 1. The ATEN framework is a synthesis of three interdependent com-
ponent approaches, THOTH, RA, and HORUS which, when used together infuse real-
ism into synthetic data. Each component of the ATEN framework seeks to answer the 
related questions in Table 2. The sections that follow describe in detail each of the 
components of ATEN. 

 
Fig. 1. The ATEN framework 

Table 2. ATEN component aims. 

THOTH How should we generate this synthetic data? 
RA What knowledge is necessary to achieve realism in the synthetic data? 
HORUS When THOTH operates using RA’s knowledge, was realism achieved 

in the resulting synthetic data? 
 
3.1 THOTH: The enhanced generic approach to SDG 

Review of the way authors described data generation approaches yielded a generic four-
step SDG approach, which incorporates the minimum common structural elements 
shared by all SDG methods. The approach is presented as a waterfall model, primarily 
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due to its cumulative and sequential nature. Thus, the next phase is undertaken solely 
through completion of the previous [52]. Verification, a required step of any scientific 
endeavour but one rarely seen in the context of SDG, can only occur during limited 
opportunities at the end of each step of the approach [52] and after the SDG operation 
is complete. The following paragraphs present the four-step SDG approach. 

1. Identify the need for synthetic data: This step involves recognising both the need 
and justification, or reason, for creating synthetic data. The most commonly expressed 
justification across the contemporary literature was that the synthetic data being created 
was necessary to replace real data containing personally identifiable, sensitive or con-
fidential information. 

2. Knowledge gathering: This step can involve a number of sub-steps assessing the 
requirements for the synthetic dataset being created. It usually begins with analysis of 
the data to be generated, identifying such things as necessary fields to be generated, the 
scope, and any constraints or rules to be imposed. 

3. Develop the method or algorithm: It is not unusual for researchers to identify 
common solutions that have become preferred for a given research method or field; a 
method or algorithm that has drawn significant focused attention or is considered more 
reliable to producing a particular outcome. Many of these algorithms have operational 
steps or processes requiring focused attention, or for which data must be properly pre-
pared. Developing the generation solution is as important as the need, and the level of 
attention paid during this step has a direct relationship to the quality of the output. 

4. Generate the synthetic data: The process of generation involves presenting any 
seed data, conditional requirements, rules, and constraints to the generation algorithm 
that will perform the processes that output synthetic data. 

This four-step approach represents a simple method, which are favoured due to its 
usefulness, reduced complexity, and experiment time; all of which reduces cost [53-
56]. However, the approach suffers the waterfall model weakness; flowing unidirec-
tionally, lacking flexibility, meaning any change in requirements or issues identified 
necessitate expensive and time consuming redevelopment and retesting [57]. For this 
reason, a more adaptable and agile approach to SDG development should be encour-
aged. Pre-planning and preparation may mitigate the weaknesses of the generic SDG 
waterfall model. This is where THOTH will assist. THOTH encourages the synthetic 
data creator to perform decisive steps prior to engaging in the generation process. 
THOTH begins with characterisation, that is, identifying the level of synthetic-ness de-
sired in the data to be generated. The synthetic-ness required of generated data can 
range from anonymisation of personally identifiable components in real data, through 
to truly synthetic data relying on no personally identifiable information during the cre-
ation process. The five primary characterisation types are shown in Table 3. 

The characterisation level provides an element that aids in the second step, selection 
of the classification, or generation model, from the following five categories of syn-
thetic generation methods: (i) data masking models that replace personally identifiable 
data fields with generated, constrained synthetic data [12, 43, 61], (ii) those that embed 
synthetic target data into recorded user data in a method known as Signal and Noise 
[11, 18, 62], (iii)  Network Generation approaches that deliver relational or structured 
data [21, 41, 44], (iv) truly random data generation approaches like the Music Box 
Model [63], and (v) probability weighted random generation models like the Monte 
Carlo [13], Markov chain [63], and Walkers Alias methods [59]. 
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Table 3. Characteristics of synthetic data 

Truly  
Synthetic Data 

Data generated where no confidential or sensitive data has been directly used. 
Approaches may rely on algorithms that populate a dataset with generic seed 
data based on statistical probability, or acute randomness. An example of Truly 
Synthetic Data can be seen in CoMSER [59] 

Fully  
Synthetic Data 

Data generated using real data in the knowledge discovery (pre-generation) 
phase, but where no real data carries across into the synthetic dataset. Examples 
include capturing and breaking up real-world data into elemental components, 
rebuilding these into entirely new rows of data (EHR4CR). Another uses the 
real data to construct a database architecture, populating that database with syn-
thetic data based on observation [13]. 

Partially  
Synthetic Data 

Datasets containing some form of synthetic data intermixed or aggregated with 
unaltered real data. An example is the Outbreak-Detection system using simu-
lated ‘signals’ superimposed on real background ‘noise’ [60] 

Anonymised-
only Data 

Projects that identify and replace, remove, or scramble sensitive fields within a 
dataset, leaving the remaining fields unchanged. 

Real Data Real or observed data in which no attempt has been made to anonymise, conceal 
or synthesise any values. 

When combined with the generic SDG approach discussed earlier, the resulting 
THOTH-enhanced generic approach is shown in Figure 2. With these steps complete, 
the synthetic data creator engages the remaining steps from the generic SDG approach 
described previously. However, they are beginning with an additional level of wisdom 
that comes from knowing where they are going (the level of synthetic-ness required of 
their efforts) and the framework for how they are going to get there (the informed se-
lection of a generation model). 

 
Fig. 2. THOTH integrated into the generic approach to SDG 

Summary of THOTH: We found a generic four-step waterfall approach is common to 
most SDG methods. This approach moves through identifying a need for synthetic data, 
gathering knowledge necessary to its generation, developing or customising an algo-
rithm or generation method common to their domain or solution needs, before generat-
ing the synthetic data. Incorporation of THOTH benefits the researcher, providing 
greater awareness of their requirements and guiding the direction of the overall syn-
thetic data generation approach.  
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3.2 RA: Characterising realism for SDG 

RA provides a structured approach to identifying and characterising realism elements, 
or knowledge, for use in SDG. The RA process, including the steps of enhanced 
knowledge discovery, are shown in Figure 3 and described in Table 4. RA identifies 
extrinsic and intrinsic knowledge following a logical progression of steps, with in-
creased focus on elements drawn from [64-67]. The following subsections present the 
processes used within the KDD data mining of Step 5 of Table 4. 
 

 
Fig. 3. Overview of the RA approach to realism in SDG 

Table 4. Enhanced KDD process following the RA approach 

Step Activity Tasks 

1 Develop and document 
information (overlaps 
with THOTH) 

Relevant prior knowledge; 
Understanding of application domain, and; 
Goal(s) of KDD process. 

2 Collect raw data (over-
laps with THOTH) 

Selecting relevant datasets on which discovery is to be performed. 

3 Refining and Cleansing 
of Raw Data 

Cleanse and pre-process data to eliminate noise, and; 
Remove incomplete or inconsistent data. 

4 Create target data Integrate data from multiple sources; 
Transform raw data; 
Project data by identifying useful features for representing the data, 
and; 
Reduce variables to those that are necessary for KDD process. 

5 KDD and Data Mining Identify data mining method to search for patterns within the target 
data (summarisation, classification, regression, clustering, web 
mining and others as described in Fayyad et al, 1996). 
Perform concept hierarchy analysis, formal concept analysis, rule 
identification methods used in HORUS 

6 Interpret and evaluate 
mined patterns 

Identify truly interesting and useful patterns. 

7 Presentation Make knowledge available for use in synthetic data generation 
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RA: Extrinsic Knowledge  
Extrinsic knowledge is the sum of quantitative and qualitative properties found in the 
real data to be synthesised. To be a suitable replacement, the synthetic data will need 
to adhere to these properties.  

Quantitative Characteristics: Real or observed data may in itself be statistical, and 
therefore quantitative, such as patient demographic data shown later in Figure 10. Even 
if it is not, it is often possible to identify quantitative knowledge, for example; consider 
generating a synthetic version of a spreadsheet of people who voted at a selection of 
polling booths, as the real data cannot be made public for privacy and confidentiality 
reasons. On the surface this may appear to be qualitative data however it would be 
possible to draw a number of statistical representations from it, such as: (a) how many 
people of each genealogical nationality voted in (b) each hour, (c) the percentage that 
were male, (d) the percentage of the overall population as found in census data voted 
in each polling booth, and so on. 

Qualitative Characteristics: The qualitative characteristics of real or observational 
data should be identified and documented for any SDG project, but especially for those 
projects seeking realistic synthetic data. One example of qualitative characteristics may 
be to identify and describe the database schema. The database schema explains how the 
data is structured [68].  In the relational database example this includes expression of 
the tables, the fields within those tables, constraints such as those identifying the pri-
mary key or limiting field values along with any referential integrity constraints, or 
foreign keys [68].  

Summary: Extrinsic Knowledge: These quantitative and qualitative observations of 
real data, once identified and documented, represent the characteristics that should be 
created and validated in synthetic data. This is especially true if authors present that 
there is a requirement for, or claim of, realism. 
 
RA: Intrinsic Knowledge  
Knowledge Discovery in Databases: While traditional methods of data mining often 
involved a manual process of scouring through databases in search of previously un-
known and potentially useful information, these processes can be slow and an ineffi-
cient use of time [64, 66, 67]. Modern approaches, where the human is accentuated by 
machine learning or neural network algorithms are considered more expedient for real-
ising insights from today’s extremely large datasets [64, 66, 67]. 

Concept Hierarchies: Concept Hierarchies (CH) are a deduction of attribute-ori-
ented quantitative rules drawn from large to very large datasets [69]. CH allow the re-
searcher to infer general rules from a taxonomy, structured as general-to-specific hier-
archical trees of relevant terms and phrases. For example: “bed in ward in hospital in 
health provider in health district” [67, 69, 70]. Developing a concept hierarchy involves 
organizing levels of concepts identified within the data into a structured taxonomy, re-
ducing candidate rules to formulas with a particular vocabulary [69]. CH are used by 
RA to identify an entity type, the instances of that entity and how they relate to each 
other; they help to ensure identification of important relationships in the data that can 
be used to synthesise meaningful results [71]. 

Once the concept hierarchy tree is identified, a second pass across the source data is 
performed to provide an occurrence count for each concept. This second pass allows 
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the researcher to enhance the concept hierarchy with statistical knowledge to improve 
accuracy of the generation model.  

Formal Concept Analysis: Formal Concept Analysis (FCA) is a method of repre-
senting information that allows the researcher to easily realise concepts observed rec-
ognised from instances of relationships between objects and attributes. For example: 
occurrences of different nosocomial infections across the wards of a hospital. FCA 
starts with a formal context represented as a triple, where an object {G} and attribute 
{M} are shown with their incidence or relationship {I} [72]. A table is created display-
ing instances where a relationship exists between the object and its corresponding at-
tribute(s). 

Concept creation, represented as rules, occurs from the context table. For example, 
one might seek to identify the smallest or largest concept structures containing one par-
ticular object. 

The second step to FCA involves creating the concept lattice. A concept lattice is a 
mapping of the formal context, or intersections of objects and attributes. The concept 
lattice allows easy identification of sets of objects with common attributes as well as 
the order of specialisation of objects with respect to their attributes [73]. 

Characteristic and Classification Rules: [69] provides a set of strategies that can be 
used to learn characteristic and classification rules from within a dataset. These rules 
can be applied as constraints during generation, and later as tools to compare against 
the resulting synthetic data to validate its accuracy and realism.  

Characterisation Rules: The development of characteristic rules entails three steps. 
First, data relevant to the learning process is collected. All non-primitive data should 
be mapped to the primitive data using the concept hierarchy trees as shown in Figure 5 
(e.g. Forceps would be mapped to Assisted, Elective would map to Caesarean and so 
on). Second, generalization should be performed on components to minimize the num-
ber of concepts and attributes to only those necessary for the rule we are working to 
create. In this way, the Name attribute on a patient record would be considered too 
general and not characteristic to a set of data from which we could make rules about 
the treatment outcomes for a particular ethnicity. The final step transforms the resulting 
generalization into a logical formula that identifies rules within the data. These rules 
are the sum of four elements, where if the values of any three of those elements are 
found to be consistent to the rule for a given instance in the dataset, the fourth element 
will always be true. 

Classification Rules: Classification knowledge discovery discriminates the concepts 
of a target class from those of a contrasting class. This provides weightings for the 
occurrence of a set of attributes for the target class in the source dataset, and accounts 
for occurrences of attributes that apply to both the target and contrasting class. To de-
velop a classification rule, first the classes to be contrasted, their attributes and relevant 
data must be identified. Attributes that overlap form part of the generalisation portion 
of the target class only. Attributes specific to a target class form the basis of classifica-
tion rules. 

 
RA: Summary  
The RA enhanced and extended KDD method identifies realistic properties from real 
data, providing improved input data quality and constraints that improve the output of 
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generation algorithms used to create synthetic data. An obvious benefit is that genera-
tion methods using this knowledge should deliver data that is an accurate replacement 
for real data. Another benefit is a set of knowledge and conditions that can be used in 
validation of realism in the data created. Its use for this last purpose is discussed in the 
next section. 
 
3.3 HORUS: An approach to validating realism 

One of ancient Egypt’s earliest precursor national gods, Horus, was revered as the god 
of the sky; that which contains both the sun and the moon (Ludwig, 2016; Porter, 2011). 
In the same way, the Horus approach to realism validation draws on both THOTH’s 
enhanced generic SDG and RA’s enhanced KDD approaches, effectively containing 
both the sun and moon as a means to validate for realism in synthetic data. 

The validation approach incorporates five steps that analyse separate elements of the 
SDG method and resulting synthetic data. These steps are identified as the smaller 
square boxes in Figure 4, with their descriptions below. Collectively, the five steps 
provide the information necessary for confirmation of whether synthetic data is con-
sistent with and compares realistically to real data that the SDG model seeks to emulate. 

Input Validation: Input validation concerns itself only with that knowledge coming 
from the generation specification in the form of data tables and statistics. The input 
validation process verifies each item, confirming that the right input data in the correct 
form is being presented to the generation engine, thus ensuring smooth operation of the 
data synthesis process [74]. Input validation is intended to prevent corruption of the 
SDG process [75]. 

Realism Validation 1: The first realism validation process verifies concepts and rules 
derived from the HCI-KDD process, along with any statistical knowledge that has been 
applied. Realism validation reviews and tests both the premise and accuracy of each 
rule to ensure consistency with the semantics of any data or guidelines used in their 
creation. 
 

 
Fig. 4. HORUS approach to realism validation, showing touch points with THOTH and RA 

Method Validation: Method validation reviews the efforts of others inside and out-
side of the research domain. Attention is drawn to methodological approaches common 
for that domain, as well as methods other domains have employed for similar types of 
SDG. Evaluating the entire scope of method application ensures that which is chosen 
should be the most appropriate for the particular need and solution. Method validation 
also seeks to verify that the algorithm being used is correctly and completely con-
structed, and free of obvious defect [76]. 
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Validation is not a search for absolute truth, more correctly, and in this instance, it 
is a search to establish legitimacy [76]. Table 5 provides the six key questions that 
should be asked of any SDG methodology the researcher may propose to use. 

Table 5. Method validation questions. 

Validation Type Validation Focus 
Conceptual Does the theoretical model adequately represent the real 

world? 
Internal Is the algorithm and computer code that employs it free from 

error? 
External Does the algorithm and computer code adequately and accu-

rately represent the real world? 
Alignment How does this model’s output compare to that of other mod-

els? 
Data How does the synthetic data compare to real observed data? 
Security Have there been any undocumented changes or manipulations 

to the model or code that may contribute to or alter the re-
sults? 

Output Validation: Output validation evaluates the output data, and verifies its basic 
statistical content. This step demonstrates the difference between the terms validation 
and verification. Validation ensures the model is free from known or detectable flaws 
and is internally consistent [76]. Verification establishes whether the output, or predic-
tions, of the SDG model are consistent with observational data. The output validation 
step ensures that the synthetically generated data conforms to the quantitative and qual-
itative aspects derived during the knowledge discovery phase.  

Realism Validation 2: The second realism validation process undertakes the same 
tests as the first, except that tests are now performed against the synthetic dataset. This 
test aims to ensure synthetic data is consistent with the knowledge (rules, constraints 
and concepts) previously derived from the input data, and used in creation of the syn-
thetic data. The second realism validation step is the most important for establishing, 
and justifying, any claim that this synthetic data presents as a realistic and proper sub-
stitute for the real data it was created to replace. 
 
3.4 Summary: Benefits of the ATEN Framework 

There are a number of ways that ATEN benefits those engaging in SDG. First, it is a 
complete SDG lifecycle that considers every element before, during and after data gen-
eration. Second, it encourages more complete level of self-documentation than most 
presented in the SDG literature. The third benefit is cumulative from the first two, in 
that when applied during an SDG project, THOTH and RA provide the necessary 
knowledge to validate realism using HORUS. ATEN supports claims of success, real-
ism, and enables repeatability. All of which are fundamental to the scientific method. 
Works found in the literature do not conform to the ATEN Framework, as significant 
gaps are evident in most SDG literature. The framework provides for additional 
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knowledge discovery and documentation processes, which could be automated. How-
ever, this is dependent on the type of data being analysed, generation method, synthetic 
data sought, and the use to which that data will be applied. The knowledge discovery 
component leads to greater accuracy and help to support validation of realism. 

4 Evaluating the ATEN Framework: The Labour & Birth EHR 

This section evaluates ATEN by applying it to the domain of midwifery. While ATEN 
is intended to be generally applicable for use with any defined group of patients and 
chosen health problem or disease that has a Caremap, for the purposes of evaluating the 
ATEN framework, this work now focuses on the problem of generating the RS-EHR 
for only the delivery episodes for female patients who are giving birth in the Counties 
Manukau District Health Board (CMDHB) catchment area of Auckland in New Zea-
land. The practical advantages, to the authors, of focusing on delivery episodes for the 
purpose of this evaluation only are that: (1) deliveries take relatively short periods of 
time; (2) comprehensive statistics are readily available that cover a long period of time; 
(3) clinical guidelines as well as locally specified midwifery practice protocols derived 
from localisation of international clinical practice guidelines are widely available; (4) 
the delivery episode can range from being very simple to being very complex with a 
wide variety of complicating factors that include the health of the mother and that of 
the baby; and, (5) the authors had ready access to midwives on a regular basis through-
out this research work. The rest of this section presents the prototype system, results of 
evaluation, and discussion of these results. 

The labour and birth EHR contains a record of the labour and birth events starting at 
onset of labour and ending when delivery is complete and the new child is presented to 
her parents. To generate the labour and birth EHR in such a way that realism is achieved 
we apply the ATEN framework’s components: THOTH, RA and HORUS. The next 
sections present this application, which leads to the synthetic labour and birth EHR that 
has the realistic properties that are guaranteed by the ATEN Framework. 

THOTH is a combination of the generic method for SDG, combine with the pre-
planning elements that characterise and classify the synthetic data being sought, in this 
case, the synthetic labour and birth EHR. Table 6 summarises the application of 
THOTH to the labour and birth scenario leading to the ingredients, method and context 
for the generation of the synthetic labour and birth EHR. In the context of the labour 
and birth EHR, the characterisation (truly synthetic data) was selected to meet with the 
ideal that we do not rely on access to the real EHR in the context of our generation 
approach. This ensures the highest degree of patient privacy as, unlike most other meth-
ods in this domain, no real patient records are necessary to this generation approach. 

Analysis of SDG literature demonstrated that a probability weighted random gener-
ation approach was more likely to generate the synthetic records required. Also, other 
methods including the data masking and the signal and noise models required access to 
some amount of real (seed) EHR data, which discounted their use in this example. 

RA is the knowledge discovery and characterisation approach seeking to identify 
realistic elements of the data gathered during THOTH. Application of RA specifically 
to the Labour and Birth problem required identification of the care process (Caremap) 
for labour and birth, as well as its concepts and contexts.  
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Table 6. Application of THOTH in the context of midwifery EHR generation. 

Aspect of THOTH  Application to Labour & Birth Context 

Identify Midwifery EHR in the context of the Labour and Birth event 

Characterisation Truly Synthetic Data 

Classification 
(method/algorithm) 

Probability Weighted Random Generation 

Knowledge Gather-
ing 
(used in 
data/knowledge-driven 
generation algorithm) 

Clinical Practice Guidelines & organisational caremaps 
Ministry of Health (MoH) Labour and Birth statistics 
Expert Clinical Knowledge from Midwives and Obstetricians 
Population (census) demographic data 
Clinical Vocabulary 
Clinical Notes Library (authored by midwives) 

Extrinsic Knowledge: Quantitative Properties: The quantitative properties in the do-
main of midwifery included a range of demographic statistics regarding the mother and 
baby. Essentially they were not as simple as looking at the examples in blue contained 
in Figure 12, presented later in this section, and saying that 22% of mothers were Eu-
ropean, or that 24% of mothers were aged between 20-24 years. There were interrela-
tionships between these values that also needed to be modelled, including that of the 
24% of mothers between 20 and 24 years of age, only 8% were identified as European. 
Other statistics included how many mothers delivered naturally versus by caesarean 
section, and the spread of clinical interventions across ethnicity, age, and gestation.  

Qualitative Properties: A range of qualitative properties were assessed within the 
knowledge gathered for generating midwifery EHRs. These included the structure of 
the source data being used, as well as the structure and appearance of how the synthetic 
data should be presented on generation. A truncated example of how demographic data 
was structured in one midwifery EHR system is shown in Table 7. Other qualitative 
aspects might include: (a) the accuracy to type of the date reported in different fields, 
(b) whether fields have been misappropriated as placeholders for other data types, and 
(c) the completeness of fields within the dataset. 

Table 7. Application of THOTH in the context of midwifery EHR generation. 

PATIENT 
PK patientID INT 
  title TEXT(10) 

  lastName TEXT(30) 
  firstName TEXT(30) 

  dateOfBirth DATETIME 
  gender CHAR(10) 

  ethnicity CHAR(20) 
  primaryLanguage VARCHAR(100) 
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Intrinsic Knowledge: Concept Hierarchy for Labour and Birth Domain: An extract 
focusing on child birth from the concept hierarchy (CH) developed for the labour and 
birth domain is presented in Figure 5. The general term Childbirth breaks down into the 
two modes by which birth occurs, Caesarean and Vaginal. As an example; Caesarean 
births break down even further into the two specific types that occur, the elective or 
requested/planned caesarean and the emergency caesarean. In this way we are moving 
from the most general concept at the top to the most specific at the bottom. This is 
extended with the addition of quantitative statistics (in brackets) identified from the 
Ministry of Health (New Zealand) source data. 
 

 
Fig. 5. Concept hierarchy enhanced with statistics. 

 
The CH provides structural understanding of primary or significant concepts, from 

most general to most specific, within the domain being modelled. In RA, is also used 
to provide statistical understanding of the incidence of each concept. The CH provides 
constraints, or weights, that are applied during the generation phase, as well as forming 
one component used to verify statistical accuracy, and in turn realism, within the re-
sulting synthetic data. 

Constraining Rules: Characteristic Rule: Fetal heart monitoring is used in midwifery 
to assess the health, and stress being suffered, by the baby. In the domain of midwifery, 
we found that only those pregnancies clinically described as low risk receive intermit-
tent fetal heart monitoring. However, clinical practice guidelines (CPGs) necessitate 
continuous monitoring for a higher risk pregnancy. Properties of this rule would be 
expressed as the sum of the four elements. The characteristic rule expressed in the con-
ditional formula is shown in Figure 6 containing the values: Sex: Female, Pregnant: 
Yes; Pregnancy Status: Low Risk; Fetal Heart Monitoring: Intermittent in Labour. This 
rule was validated against, and found to be consistent with, the CPGs for several hos-
pital birthing facilities in New Zealand. 

 

"c (midwiferyPatient(x) ® ((Sex(x) = female) ^ (Pregnant(x) = Yes) ^ (pregnan-
cyStatus(x) = Low Risk) ^ (fetalHeartMonitoring(x) = Intermittent))) 

Fig. 6. Example of a characteristic rule. 
 

Classification Rule: The CPGs for Labour and Birth provide that where an expectant 
mother has had a previous caesarean birth, she may elect in this subsequent birth to still 
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(safely) attempt a vaginal birth (known in medical terms as a VBAC - vaginal birth 
after caesarean). However, where she has had two or more previous caesarean births 
the obstetric team will counsel her to only have a caesarean birth due to considerations 
of risk and safety for both mother and baby that result from the previous caesarean scars 
and potential stress on the uterus. Figure 7 provides an example of a classification rule 
showing that 100% of patients undergo a caesarean procedure for the current birth if 
two or more of their previous births have also been by caesarean section. This rule was 
successfully validated against the MoH Labour and Birth statistics, with the finding that 
it was true in operation across all births that occurred in New Zealand for that year. 

 

"c (modeOfDelivery(x) ® ((Multip(x) = Yes) ^ (Primip(x) = No) ^ (previousDeliv-
ery=CSect<2(x) = No) ^ (previousDelivery=CSect>=2(x) = Yes[d:100%]))) 

Fig. 7. Example of a classification rule. 
 

Characterisation rules describe reduced collections of generalised attributes for a 
class occurring together in the dataset; where for any query of the dataset specifying n-
1 attributes from the rule, the remaining attribute is the only one that can be true. 

Classification rules describe specific collections of attributes that differentiate one 
class from one or more remaining classes; where the target class is the only response 
for a query against the dataset specifying all of the attributes defined in the rule. These 
rules are used to constrain generation, ensuring consistency between real-world and the 
synthetic. They are used during validation to identify instances where synthetic records 
may be inconsistent, for example, if the midwifery patient being generated was male. 

 
Formalisation of Labour and Birth CPG into Labour and Birth Caremaps 
The core set of constraints in the CoMSER Method are CPGs, Health Incidence Statis-
tics (HIS), patient demographic statistics and the Caremap, all formalised in an inte-
grated way into the STM following the process shown in Figure 8 [51]. The STM is the 
constraint enforcement formalism for generating the RS-EHR entries satisfying the 
constraints.  

 
Fig. 8. UML Activity Diagram: Process of creating and integrating constraints into 
State Transition Machine for the midwifery Caremap. 
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Figure 9 presents the UML State Diagram (USD) for the State Transition Machine 
(STM) that integrates the core constraints for generating the RS-EHR for delivery epi-
sodes within the Counties Manukau District Health Board (CMDHB) of Auckland, 
New Zealand (NZ). 

The transition from one state to the next is determined by the pseudo-random selec-
tion of one state in the STM in which is stored the health incident prevalence constraint 
that is formally specified as the 2-tuple, <P, O>, such that P is the total number of 
patients who are known to enter the state according to statistics within the CMDHB 
catchment area, and O is the number of patients expressed as a percentage of the im-
mediately preceding parent state. The caremap formalised by the STM in Figure 9, co-
vers the midwifery delivery event, which is also referred to, in this work, as the delivery 
episode. The caremap begins temporally at the point where the pregnant patient is es-
tablished as ‘in labour’. It follows the sequence of possible states, that is, clinical events 
or decisions or both, consistent with the locations, interventions and outcomes that are 
currently available to the patient or her treating clinicians until the birth process con-
cludes in one of the possible outcomes. Thus, the Caremap and hence its STM form the 
basis of the integrated constraint framework and also the basis for the algorithm for the 
RS-EHR generation. 

In validating the midwifery RS-EHR, HORUS was applied, adhering to the steps as 
presented in Figure 4. The following subsections describe the results observed. 

Input Validation: In creating the midwifery EHRs for the Labour and Birth event we 
used CPGs along with treatment and outcome statistics. Input validation necessitated 
ensuring statistics could be located or extracted that correctly applied to each part of 
the processes described in the CPGs. Also, cross-validation of those statistics was per-
formed through comparison against more than one source. Where any difference in 
terminology existed between input datasets, clinicians were involved to ensure these 
data were correctly linked together [59]. 

Realism Validation 1: The first realism validation process verified both the premise 
and accuracy of each rule, ensuring consistency with the semantics of knowledge used 
in their creation, such as the CPGs discussed in the Input Validation example above. 
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Fig. 9. UML State Diagram that integrates constraints for generating the RS-EHR for 
delivery episodes within the CMDHB catchment area of NZ. 
 
They were tested in real circumstances to ensure they were not rendered irrelevant 
through interaction with the original source or observed data. Where any knowledge is 
at issue, the researcher should return to the knowledge discovery phase. 

Method Validation: Method validation for these midwifery EHRs concluded that the 
use of caremaps extended with descriptive rules and statistics, presented as State Tran-
sition Machines, and a probability weighted generation model were appropriate given 
the available input knowledge, purpose and output data required of the CoMSER 
model. 

Output Validation: As one example of output validation, statistical values from 
within the synthetic data were validated and verified against those identified in the 
knowledge gathered prior to generation. This comparison is shown as the orange line 
in Figure 10, demonstrating that the values contained in the CoMSER synthetic mid-
wifery records were consistent with the MoH statistics used in their production.   

Realism Validation 2: In the example of RS-EHR, if a synthetic patient were to be 
treated in a manner contradictory to the principles or application of a CPG, this could 
invalidate the entire dataset. In the same instance, if seeking validation by clinicians, it 
may be necessary to present the synthetic EHR in a clinician-familiar manner. 

Using the caremap STM in Figure 9, the prototype system was used to generate mid-
wifery RS-EHR for 1000 synthetic patients. Figure 11 presents a sample RS-EHR that  
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Fig. 10. A comparative quantitative example using patient demographics from the Min-
istry of Health (NZ) statistics with output validation from our prototype RS-EHR. 
 

 
Fig. 11. Sample Realistic Synthetic EHR generated by CoMSER. 

 
has been generated by the CoMSER Method prototype. It should be noted that the col-
umn in the screenshot entitled “Node” indicates either the state or the transition in the 
STM from which the synthetic entry has been generated. The column has been inserted 
only for debugging purposes and may or may not be meaningful to the clinician.  

A convenience survey of clinicians from New Zealand’s midwifery discipline was 
conducted to assess the realistic characteristic of synthetic records generated using the 
CoMSER prototype application. The survey instrument used a forced choice Likert 
scale in which the clinician examined clinical and temporal notes independently and 
jointly. The realism survey questions posed to midwife clinicians is found in Table 8. 
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Table 8. Realism survey 

Ref Survey Response Prompt Aspect Evaluated 

Q1 After reviewing the record of a randomly selected patient, I 
find the clinical notes for the record identical to the notes a 
clinician would expect to find in an actual patient EHR. 

Realistic property 
for clinical notes 

Q2 After reviewing the record of a randomly selected patient, I 
find the temporal (day/time) information identical to what 
the clinician would expect to find in the actual patient EHR. 

Realistic property 
for the temporal 
model 

Q3. After reviewing the record of a randomly selected patient, I 
find the clinical notes and temporal (day/time) information, 
when read together, has neither conflicts nor inconsisten-
cies as would be expected in the actual patient EHR. 

Realistic property 
for the entire RS-
EHR and hence for 
clinical logic flow 
(all constraints 
taken together) 

A total of n=45 randomly selected records were examined (15 records each by 3 
clinician experts) in answering whether the synthetic EHR possessed the same qualities 
as the clinician would expect to find in  actual EHR. The results of this survey demon-
strate that clinical and temporal notes, when examined independently, were identical in 
93% (Q1) and 93% (Q2) of the records respectively, while 87% (Q3) of the records 
were identical when examined jointly. In assessing inter-rater reliability among the ex-
perts, inconsistencies between the RS-EHR and the actual EHR were identified in 0%  
 (Expert 1), 7% (Expert 2), and 33% (Expert 3) of the records. This survey, involving 
practicing midwife clinicians, indicates that realism is found in the majority of clinical 
notes and temporal information, when examined independently and jointly, in synthetic 
EHRs produced by the CoMSER prototype application. This analysis substantiates our 
claim that the characteristic of realism does exist in the majority of RS-EHRs developed 
through the CoMSER method, thus demonstrating the promising usefulness for second-
ary use. 
 
Summary of Application of ATEN Framework 
This section has presented application of the ATEN framework to the generation of the 
synthetic EHR for the labour and birth domain. The most significant challenge in RS-
EHR generation is ensuring that the generated RS-EHR is realistic. The prototype sys-
tem for generating RS-EHR for midwifery uses an integrated constraints framework, 
which is formalised using the State Transition Machine (STM). The STM models the 
guideline-based Caremap for the labour and birth domain for which the RS-EHR is to 
be generated. Computations that makeup the RS-EHR are driven by STM execution 
using pseudo-random transition selection within defined frequency distributions based 
on local HIS. The quality of the generated RS-EHR is guaranteed by recognition and 
use of direct interaction with experienced and practising midwives. The development 
of methods and techniques for measuring the extent of realistic properties of the gener-
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ated RS-EHR was necessary. Generating RS-EHRs using publicly available health sta-
tistics and CPGs ensures patient privacy and confidentiality while also benefiting many 
uses including: research, software development and training. The ATEN framework 
provided a structured approach that ensured procedural steps and documentation were 
not overlooked, and that validation was a consideration from inception through proto-
type production to evaluation of the resulting synthetic EHR. 

While all random number generation methods apply statistics and therefore can be 
considered as applying the statistics in generation that the researcher intends to find in 
the result, most still have some variation from true. Many set only one or two parame-
ters (for example, heads or tails), which simplifies their models and limits potential 
variation in the expected result. Ours set a large number of constraints that all had to be 
within statistical limits... age, ethnicity, age at pregnancy, age at pregnancy by ethnicity, 
the type of birth, incidence of each node in the caremap, and the overall patient out-
comes. There were more than 15 variables, some interrelated, being handled by the 
SDG algorithm. Each to be statistically similar at the end of the generation cycle. Val-
idation using HORUS has shown that the prototype system designed with THOTH and 
RA has achieved the realism that the overall ATEN framework sets out to produce. 

5 Discussion and Future Work 

ATEN provides a comprehensive way to achieve realistic synthetic data through three 
inter-dependent approaches, THOTH, RA, and HORUS, that respectively cover (1) a 
generic approach to SDG with enhancement (THOTH); (2) knowledge discovery (RA); 
and (3) validation of realism in the resulting synthetic data (HORUS). To the best of 
our knowledge, no other work in this domain has produced a generic model for SDG, 
a framework for realism, or a unified approach to validation of synthetic data.  

The main benefit of THOTH is the guarantee of a best plan for the generation 
method, as well as ensuring best preparation of the knowledge elements and techniques 
to be used in creation of synthetic data. The THOTH approach is easily implemented 
and comes with little resource overhead. A limitation of THOTH is the unidirectional 
linear nature of its waterfall-type model, however classification and characterisation 
may greatly mitigate the effects of this limitation. 

 With adherence to THOTH, RA benefits through assurance as to the quality of syn-
thetic data being created. This is achieved through establishment of elements and char-
acteristics that define realism for the generation project; the extrinsic quantitative and 
qualitative properties, and intrinsic knowledge aspects that inhabit the input data. An-
other benefit of RA is that as additional items of input or seed data are introduced, the 
statistics, knowledge, constraints, and rules become further refined, increasing the po-
tential accuracy and realism of resulting synthetic data. A limitation that arises is that 
it is presently conducted manual, requiring the researcher to possess an eye for detail 
along with sound logic, analytical, and problem solving skills. 

 HORUS benefits through being an inherently straight-forward model for validation 
and verification of synthetic data. HORUS identifies rules, constraints, or data that may 
be causing issues; reducing the accuracy, realism, and utility of synthetic data being 
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delivered. It is possible that fewer SDG iterations may be required, significantly reduc-
ing the time taken to produce accurate and realistic synthetic data. No directly compa-
rable works were located during this research. However, the closest relatable work en-
countered was that of [34], whose work presented four separate approaches to valida-
tion of synthetic data produced in the domain of computational modelling. Each of these 
approaches appears, even in that author’s own summation, not to be representative of a 
single validation solution. The strength of HORUS is that it represents a single opera-
tional validation solution. HORUS has a significant limitation in that it is wholly de-
pendent on having already engaged RA to identify the statistics, knowledge, and rules 
that will be significant in assuring that the synthetic data is suitably representative. An-
other limiting issue is that the case study conducted in this work identified that where 
the extrinsic quantitative aspects of the synthetic data are found wanting, continued 
engagement in the HORUS validation approach looking at the intrinsic knowledge, 
rules and constraints may be of little additional benefit until those extrinsic issues are 
resolved. 

There are a number of avenues open for future work, including use of ATEN during 
the entire lifecycle of a significant real-life SDG project. This would necessitate the 
considered operation of a new SDG project where every element was documented rig-
orously, and where two streams are conducted concurrently. This new project due to 
the incompleteness of every SDG project reviewed during this research. In the first, or 
normal stream, the SDG project would operate in the manner that the majority do now; 
following the SDG generic approach described in Figure 2. No input or other validation 
steps would be taken and realism would be given no more consideration than it is in the 
majority of SDG cases reviewed. In the second stream, another researcher would collect 
the same input materials and documentation from the first and use them to follow the 
complete and validated SDG approach described in this work. The second researcher 
would ameliorate his input materials and generation method through operation of 
ATEN. Both synthetic datasets could then be validated using HORUS. Another avenue 
for future work would be development of machine learning models to automate some 
or all of the KDD and validation. 

6 Summary and Conclusion 

This chapter has presented and demonstrated the ATEN framework, a triangle of three 
interdepended approaches: THOTH, RA and HORUS. The triangle is one of the strong-
est structures seen in engineering and nature. The components communicate with their 
adjacent neighbours; each enhanced through interaction with and engagement of its 
counterparts. THOTH provides framework and approach knowledge that improves RA, 
RA provides the extrinsic and intrinsic knowledge to seed HORUS, and the results of 
engaging HORUS either identify where an issue may exist in the first two and therefore 
target where additional work is required, or confirms their successful operation and 
therefore justify the claim of realism in the synthetic data. 

The approach proposed in this work, first, draws on, expands and enhances estab-
lished methods to result in a complete end-to-end validation solution.  This ensures a 
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complete analysis of the source data leading to useful knowledge, which greatly im-
proves the generation method leading to better realism in synthetic data. Second, the 
knowledge gathered prior to synthetic data generation provides a solid base with which 
to validate the synthetic data, ensuring its ability to actually replace real data. Third, the 
approach presented here is simple, intuitive  and not overly burdensome, with many of 
the component steps being activities that data synthesisers may already be undertaking 
in an albeit unstructured or unconsidered way. 
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