1,656 research outputs found

    Effect of dislocations on properties of heteroepitaxial InP solar cells

    Get PDF
    The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells

    Monte Carlo approach of the islanding of polycrystalline thin films

    Full text link
    We computed by a Monte Carlo method derived from the Solid on Solid model, the evolution of a polycrystalline thin film deposited on a substrate during thermal treatment. Two types of substrates have been studied: a single crystalline substrate with no defects and a single crystalline substrate with defects. We obtain islands which are either flat (i.e. with a height which does not overcome a given value) or grow in height like narrow towers. A good agreement was found regarding the morphology of numerical nanoislands at equilibrium, deduced from our model, and experimental nanoislands resulting from the fragmentation of YSZ thin films after thermal treatment.Comment: 20 pages, 7 figure

    The microbiome of pest insects:It is not just bacteria

    Get PDF
    Insects are associated with multiple microbes that have been reported to influence various aspects of their biology. Most studies in insects, including pest species, focus on the bacterial communities of the microbiome even though the microbiome consists of members of many more kingdoms, which can also have large influence on the life history of insects. In this review, we present some key examples of how the different members of the microbiome, such as bacteria, fungi, viruses, archaea, and protozoa, affect the fitness and behavior of pest insects. Moreover, we argue that interactions within and among microbial groups are abundant and of great importance, necessitating the use of a community approach to study microbial-host interactions. We propose that the restricted focus on bacteria very likely hampers our understanding of the functioning and impact of the microbiome on the biology of pest insects. We close our review by highlighting a few open questions that can provide an in-depth understanding of how other components of the microbiome, in addition to bacteria, might influence host performance, thus contributing to pest insect ecology

    Correlating Josephson supercurrents and Shiba states in quantum spins unconventionally coupled to superconductors

    Get PDF
    Local spins coupled to superconductors give rise to several emerging phenomena directly linked to the competition between Cooper pair formation and magnetic exchange. These effects are generally scrutinized using a spectroscopic approach which relies on detecting the in-gap bound modes arising from Cooper pair breaking, the so-called Yu-Shiba-Rusinov (YSR) states. However, the impact of local magnetic impurities on the superconducting order parameter remains largely unexplored. Here, we use scanning Josephson spectroscopy to directly visualize the effect of magnetic perturbations on Cooper pair tunneling between superconducting electrodes at the atomic scale. By increasing the magnetic impurity orbital occupation by adding one electron at a time, we reveal the existence of a direct correlation between Josephson supercurrent suppression and YSR states. Moreover, in the metallic regime, we detect zero bias anomalies which break the existing framework based on competing Kondo and Cooper pair singlet formation mechanisms. Based on first-principle calculations, these results are rationalized in terms of unconventional spin-excitations induced by the finite magnetic anisotropy energy. Our findings have far reaching implications for phenomena that rely on the interplay between quantum spins and superconductivity. The impact of local magnetic impurities on superconducting order parameter remains largely unexplored. Here, the authors visualize the effect of different magnetic perturbations on a superconductor, unveiling a rich correlation of the interplay between quantum spins and superconductivity in different spectroscopic regimes

    Fluctuating Bond Aggregation: a Model for Chemical Gel Formation

    Full text link
    The Diffusion-Limited Cluster-Cluster Aggregation (DLCA) model is modified by including cluster deformations using the {\it bond fluctuation} algorithm. From 3dd computer simulations, it is shown that, below a given threshold value cgc_g of the volumic fraction cc, the realization of all intra-aggregate bonding possibilities prevents the formation of a gelling network. For c>cgc>c_g, the sol-gel transition occurs at a time tgt_g which, in contrast to DLCA, doesnot diverge with the box size. Several results are reported including small angle scattering curves and possible applications are discussed.Comment: RevTex, 9 pages + 3 postscript figures appended using "uufiles". To appear in Phys. Rev. Let

    Spiral high-speed scanning tunneling microscopy: Tracking atomic diffusion on the millisecond timescale

    Get PDF
    Scanning tunneling microscopy (STM) is one of the most prominent techniques to resolve atomic structures of flat surfaces and thin films. With the scope to answer fundamental questions in physics and chemistry, it was used to elucidate numerous sample systems at the atomic scale. However, dynamic sample systems are difficult to resolve with STM due to the long acquisition times of typically more than 100 s per image. Slow electronic feedback loops, slow data acquisition, and the conventional raster scan limit the scan speed. Raster scans introduce mechanical noise to the image and acquire data discontinuously. Due to the backward and upward scan or the flyback movement of the tip, image acquisition times are doubled or even quadrupled. By applying the quasi-constant height mode and by using a combination of high-speed electronics for data acquisition and innovative spiral scan patterns, we could increase the frame rate in STM significantly. In the present study, we illustrate the implementation of spiral scan geometries and focus on the scanner input signal and the image visualization. Constant linear and constant angular velocity spirals were tested on the Ru(0001) surface to resolve chemisorbed atomic oxygen. The spatial resolution of the spiral scans is comparable to slow raster scans, while the imaging time was reduced from ~100 s to ~8 ms. Within 8 ms, oxygen diffusion processes were atomically resolved

    What do cyclists need to see to avoid single-bicycle crashes?

    Get PDF
    The number of single-bicycle crash victims is substantial in countries with high levels of cycling. To study the role of visual characteristics of the infrastructure, such as pavement markings, in single-bicycle crashes, a study in two steps was conducted. In Study 1, a questionnaire study was conducted among bicycle crash victims (n = 734). Logistic regression was used to study the relationship between the crashes and age, light condition, alcohol use, gaze direction and familiarity with the crash scene. In Study 2, the image degrading and edge detection method (IDED-method) was used to investigate the visual characteristics of 21 of the crash scenes. The results of the studies indicate that crashes, in which the cyclist collided with a bollard or road narrowing or rode off the road, were related to the visual characteristics of bicycle facilities. Edge markings, especially in curves of bicycle tracks, and improved conspicuity of bollards are recommended. Statement of Relevance: Elevated single-bicycle crash numbers are common in countries with high levels of cycling. No research has been conducted on what cyclists need to see to avoid this type of crash. The IDED-method to investigate crash scenes is new and proves to be a powerful tool to quantify 'visual accessibility'. © 2011 Taylor & Francis

    A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities

    Get PDF
    We present the design and development of a variable-temperature high-speed scanning tunneling microscope (STM). The setup consists of a two-chamber ultra-high vacuum system, including a preparation and a main chamber. The preparation chamber is equipped with standard preparation tools for sample cleaning and film growth. The main chamber hosts the STM that is located within a continuous flow cryostat for counter-cooling during high-temperature measurements. The microscope body is compact, rigid, and highly symmetric to ensure vibrational stability and low thermal drift. We designed a hybrid scanner made of two independent tube piezos for slow and fast scanning, respectively. A commercial STM controller is used for slow scanning, while a high-speed Versa Module Eurocard bus system controls fast scanning. Here, we implement non-conventional spiral geometries for high-speed scanning, which consist of smooth sine and cosine signals created by an arbitrary waveform generator. The tip scans in a quasi-constant height mode, where the logarithm of the tunneling current signal can be regarded as roughly proportional to the surface topography. Scan control and data acquisition have been programmed in the experimental physics and industrial control system framework. With the spiral scans, we atomically resolved diffusion processes of oxygen atoms on the Ru(0001) surface and achieved a time resolution of 8.3 ms per frame at different temperatures. Variable-temperature measurements reveal an influence of the temperature on the oxygen diffusion rate

    Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms

    Full text link
    Ultra-low density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging. Finite element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference
    • …
    corecore