466 research outputs found

    Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides

    Get PDF
    Despite considerable increased pesticide use over the past decades, little research has been done into their fate and effects in surface waters in tropical regions. In the present review, possible differences in response between temperate and tropical freshwaters to pesticide stress are discussed. Three underlying mechanisms for these differences are distinguished: (1) climate related parameters, (2) ecosystem sensitivity, and (3) agricultural practices. Pesticide dissipation rates and vulnerability of freshwaters appear not to be consistently higher or lower in tropical regions compared to their temperate counterparts. However, differences in fate and effects may occur for individual pesticides and taxa. Furthermore, intensive agricultural practices in tropical countries lead to a higher input of pesticides and spread of contamination over watersheds. Field studies in tropical farms on pesticide fate in the enclosed and surrounding waterways are recommended, which should ultimately lead to the development of surface water scenarios for tropical countries like developed by the Forum for the co-ordination of pesticide fate models and their use for temperate regions. Future tropical effect assessment studies should evaluate whether specific tropical taxa, not represented by the current standard test species in use, are at risk. If so, tropical model ecosystem studies evaluating pesticide concentration ranges need to be conducted to validate whether selected surrogate indigenous test species are representative for local tropical freshwater ecosystems

    Impact of single and repeated applications of the insecticide chlorpyrifos on tropical freshwater plankton communities

    Get PDF
    This paper describes the effects of a single and a repeated application of the organophosphorus insecticide chlorpyrifos on zooplankton and phytoplankton communities in outdoor microcosms in Thailand. Treatment levels of 1 mu g L-1 were applied once or twice with a 2-week interval. Both treatments led to a significant decrease in cladocerans followed by an increase in rotifers, although the extent by which species were affected was different. Ceriodaphnia cornuta was the most responding cladoceran after the first treatment, while Moina micrura responded most to the second. This is explained by differences in the growth phase of M. micrura at the time of application and an increase in Microcystis abundance over the course of the experiment. Several phytoplankton taxa either increased or decreased as a result of the chlorpyrifos-induced changes in zooplankton communities. Even though chlorpyrifos disappeared fast from the water column, effects on plankton communities persisted till the end of the experiment (42 days) when the insecticide concentrations had dropped below the detection limit. This was presumably due to the increasing population trend of Microcystis, favouring rotifers over cladocerans

    Principal response curves technique for the analysis of multivariate biomonitoring time series

    Get PDF
    Although chemical and biological monitoring is often used to evaluate the quality of surface waters for regulatory purposes and/or to evaluate environmental status and trends, the resulting biological and chemical data sets are large and difficult to evaluate. Multivariate techniques have long been used to analyse complex data sets. This paper discusses the methods currently in use and introduces the principal response curves method, which overcomes the problem of cluttered graphical results representation that is a great drawback of most conventional methods. To illustrate this, two example data sets are analysed using two ordination techniques, principal component analysis and principal response curves. Whereas PCA results in a difficult-to-interpret diagram, principal response curves related methods are able to show changes in community composition in a diagram that is easy to read. The principal response curves method is used to show trends over time with an internal reference (overall mean or reference year) or external reference (e.g. preferred water quality or reference site). Advantages and disadvantages of both methods are discussed and illustrate

    Pesticide distribution and use in vegetable production in the Red River Delta of Vietnam

    Get PDF
    For a long time pesticides attracted interest from the Vietnamese governments and farmers for their positive effects in protecting crop yield losses resulting from pests and other plant diseases. Recently, the negative effects of pesticides on human health, natural food chains and the environment are increasingly being taken into account by both state and non-state actors. Striking a balance between positive and negative effects is complicated as, most likely, pesticides will continue to maintain their vital role in an agriculture-based country such as Vietnam. However, recently a shift can be noticed in farmers' selection and application of pesticides, initiated mainly by farmers themselves and to a lesser extent also by other actors such as the government, pesticide companies and distributors. This article provides an empirical insight into this shift, based on the results from research in four provinces in the Red River Delta. Possible implications for policies toward greening pesticide handling practices in vegetable production are drawn, such as removing inexpensive pesticides (often associated with high toxicity) from the market, giving technical training on pesticide selection and use to farmers, and reconsidering the role different actors can play in future safe vegetable production program

    Ecologische risicobeoordeling: van boekhouden naar chemische stress ecologie

    Get PDF
    Om de negatieve effecten van chemische stoffen op het milieu in te schatten wordt een ecologische risicobeoordeling uitgevoerd die vaak bestaat uit simpele, niet realistische rekenregels en worstcase uitgangspunten. In deze oratie wordt betoogd dat deze procedures een gebrekkige ecologische onderbouwing hebben en daarom niet de werkelijke ecologische risico's kunnen bepalen. Van den Brink neemt in deze rede de bescherming van het zoetwater ecosysteem tegen de negatieve effecten van bestrijdingsmiddelen als uitgangspunt. De wetenschappelijke argumentatie is te extrapoleren naar andere chemische stoffen en milieucompartimenten, al zal deze hier en daar praktische aanpassing behoeve

    Environmental variables, pesticide pollution and meiofaunal community structure in two contrasting temporarily open/closed false bay estuaries

    Get PDF
    Environmental variables (including natural and anthropogenic stressors) and meiobenthic communities were sampled in a ‘natural’ (Rooiels) and a ‘disturbed’ (Lourens) estuary in the Western Cape, South Africa, bimonthly for 20 months. A primary aim of the study was to assess if the meiobenthic community structure is driven by different variables when comparing ‘natural’ versus ‘disturbed’ system. Due to the much smaller catchment of the Rooiels Estuary, many environmental variables were significantly different (p<0.001) from the variables in the Lourens Estuary, e.g. salinity, temperature, pH, total suspended solids, nitrate and depth. No pesticide concentrations were expected in the Rooiels Estuary due to the absence of agricultural development in the catchment. However, chlorpyrifos (8.9 µg/kg), prothiofos (22.0 µg/kg) and cypermethrin concentrations (0.42 µg/kg) were detected frequently, with the highest concentrations recorded during the summer months. Principal response curve analysis showed that temporal variability between sampling dates explained 42% of the variance in environmental variables and pesticide concentrations and spatial variability between the 2 estuaries explained 58%. Variables contributing most to the differences were higher concentrations of endosulfan, p,p-DDE and nitrate concentrations in the Lourens Estuary and larger grain size and higher salinity at the bottom in the Rooiels Estuary. In general the meiofaunal community in the Rooiels Estuary showed a significantly higher number of taxa (p<0.001), a significantly higher Shannon Wiener Diversity Index (

    Probabilistic risk assessment of the environmental impacts of pesticides in the Crocodile (west) Marico catchment, North-West Province

    Get PDF
    External agricultural inputs, such as pesticides, may pose risks to aquatic ecosystems and affect aquatic populations, communities and ecosystems. To predict these risks, a tiered approach was followed, incorporating both the PRIMET and PERPEST models. The first-tier PRIMET model is designed to yield a relatively worst-case risk assessment requiring a minimum of input data, after which the effects of the risks can be refined using a higher tier PERPEST model. The risk assessment initially depends on data supplied from local landowners, pesticide characteristic, application scheme and physical scenario of the environment under question. Preliminary results are presented, together with ecotoxicological data on several frequently-used pesticides in a section of the Crocodile (west) Marico Water Management Area (WMA) in South Africa. This area is historically known to have a high pesticide usage, with deltamethrin, aldicarb, parathion, cypermethrin and dichlorvos being the main pesticides used. Deltamethrin was indicated as having the highest probability of risks to aquatic organisms occurring in the study area. Cypermethrin, parathion, dichlorvos, carbaryl, romoxynil, linuron, methomyl and aldicarb were all indicated as having possible risks (ETR 1-100) to the aquatic environment. Pesticides posing no risk included fenamiphos, abamectin, pendimethalin, captan, endosulfan, alachlor, bentazone and cyromazine (ET

    Ecological and statistical evaluation of effects of pesticides in freshwater model ecosystems

    Get PDF
    Aquatic risk assessment of pesticidesThe first tier in the aquatic risk assessment procedure consists of a comparison between a Predicted Environmental Concentration (PEC) with a No Effect Concentration (NEC). A requirement for registration is that the PEC should not exceed the NEC. The NEC is calculated from the toxicity of the pesticide for defined standard test species (viz. algae Daphnia , fish) and an assessment factor, which accounts for potential differences between standard test species and indigenous species. The assessment factors used are 100 (to be multiplied with the acute EC50 of Daphnia and fish) or 10 (to be multiplied with the chronic NOEC of fish or EC50 of algae). Because this approach lacks ecological realism, the first aim of the present thesis was to validate the assessment factors used in the first tier by evaluating three chemicals with different modes of action (insecticide, herbicide, fungicide) as benchmark compounds.We compared the No Observed Effect Concentrations (NOECs), resulting from microcosm and mesocosm experiments using these compounds, with the NECs as used for the risk assessment procedure. Table 1 summarises the standards calculated from the first tier criteria set by the Uniform Principles (UP-standard), as well as the NOEC ecosystem for acute and chronic exposure regimes for the three substances. In addition, Table 1 lists the Dutch water quality standards. The assessment factors seem to protect the tested aquatic ecosystem against acute and chronic exposure to the insecticide chlorpyrifos and against chronic exposure to the herbicide linuron and the fungicide carbendazim (Table 1; chapters 2, 3 and 4). Dutch water quality standards for these three compounds were lower than the UP-standards and thus also seem to protect the aquatic ecosystems tested when exposed to individual compounds.A comparison between the UP-standards and the Lowest Observed Effect Concentration at the ecosystem level (LOEC ecosystem ) indicates that when the NEC is exceeded by a factor of 10, effects cannot be excluded in the case of chronic exposure. In the case of a single application of the insecticide chlorpyrifos, however, the assessment factor can be considered overprotective; an assessment factor of 10 instead of 100 would also seem to suffice. Two extensive literature reviews on the impact of insecticides and herbicides on aquatic microcosms and mesocosms also demonstrate that the first tier criteria of the Uniform Principles are generally adequate to protect different aquatic ecosystems from pesticide stress (Lahr et al., 1998; Van Wijngaarden et al., 1998). For compounds such as fungicides, however, hardly any information could be found in the open literature, so that validation of the assessment factors for these types of pesticide needs further attention.Table 1:Derived UP-standards, Dutch water quality standards and NOEC ecosystem observed in semi-field studies for the insecticide chlorpyrifos, the herbicide linuron and the fungicide carbendazim (all concentrations in µg/L). UP-standards were calculated from criteria set by the first tier of aquatic risk assessment. For references to toxicity values see Table 3 in chapter 1 of this thesis. UP-standardDutch water quality standardNOEC ecosystem / LOEC ecosystemShort-termLong-termAcute exposureChronic exposureChlorpyrifos0.01 a0.01 c0.0030.1 / 0.9 (Chapter 2)0.01 d/ 0.1 eLinuron0.6 b*0.6 b*0.25- / -0.5 / 5 (Chapter 3)Carbendazim3.2 a1 c0.11- / -3.3 / 33 (Chapter 4)* Dutch standard would be 0.1 µg/L (0.1 x NOEC of the standard test algae; Anonymous, 1995); - No data available; a: 0.01 × LC50 Daphnia ; b: 0.1 × EC50 Algae; c: 0.1 × NOEC Daphnia; d: data from unpublished experiment, Van den Brink et al., in prep.; e: data from Van den Brink et al., 1995.Ecological effects and recoveryOne of the aims of the present thesis was to gain insight into long-term community responses and into the factors determining the recovery of affected populations after a single application of an insecticide in experimental ditches. As was expected from its mode of action, application of chlorpyrifos resulted in large adverse effects on arthropod taxa (chapter 2). Because this experiment was performed in relatively large, outdoor systems, the recovery of the affected populations could be investigated. The recovery of populations of individual species was highly dependent on their life-cycle characteristics, such as the number of generations per year, the presence of resistant life stages and the ability to migrate from one system to another. In chapter 2 this is illustrated by the responses of two mayflies, cladocerans and an amphipod. The mayflies Cloeon dipterum and Caenis horaria do not have life stages resistant to chlorpyrifos, but are able to migrate from one ditch to another. They are also almost equally susceptible to chlorpyrifos in the laboratory but showed a very different recovery pattern.The former species recovered within 12 weeks at the highest treatment level, whereas the latter species took 24 weeks to recover fully. This can be explained from the difference in the number of generations per year. C. dipterum has many generations per year and thus recolonises the ditch repeatedly, thus recovering as soon as the concentration of chlorpyrifos allows this. C. horaria , however, produces only one generation per year, so that recovery can only take place when the next generation recolonises the ditch. Unlike mayflies, Cladocerans are not able to migrate actively from one ditch to the other. They did, however, show a very fast recovery at the higher concentration (Chapter 2). This is possible because they have a short generation time and resistant life stages in the form of ephyppia. If a taxon is not able to recolonise an impacted system and does not have resistant life stages, the species can become extinct in isolated systems like the experimental ditches. This applies for the amphipod Gammarus pulex , which became extinct at the two highest concentrations and did not recover within the 55 week experimental period. No significant effects on the invertebrate community, with the exception of Gammarus, were found from week 24 after insecticide application onwards, suggesting recovery.As part of the third aim of the thesis, the long-term responses in ecosystem structure and functioning after chronic exposure to a herbicide and fungicide were studied in aquatic microcosms. The higher concentration of the photosynthesis-inhibiting herbicide linuron resulted in a decreased biomass of the macrophyte Elodea nuttallii and decreased abundance of most algal taxa (chapter 3). The dissolved oxygen and pH levels also decreased at lower pesticide concentrations as a consequence of inhibited photosynthesis. Although a decrease in the abundance of most algal taxa was observed after to the herbicide application, a net increase in chlorophyll-a was found for the phytoplankton, periphyton and neuston. This increase was completely caused by the green alga Chlamydomonas sp., which appeared to be relatively tolerant to linuron and also had the ability to develop a tolerance to relatively high concentrations within a week. As a result of this tolerance and the reduced competition for nutrients with macrophytes, the community in the microcosms shifted from macrophyte-dominated to an algae-dominated state, especially at the highest treatment level (150 µg/L). The Copepoda and Cladocera benefited from this increased food supply and showed elevated abundance values at the higher treatment levels. Some macrophyte-associated invertebrates decreased in abundance as a result of the decline of their habitat.The fungicide carbendazim, which belongs to the bendimidazoles, is known to adversely affect microorganisms and worms. This property explains its effects on the "worm-like" taxa of the Turbellaria and Oligochaeta, but could not explain its effects on invertebrate groups like Amphipoda, Gastropoda and Cladocera (chapter 4). Unlike the direct effects of chlorpyrifos and linuron, therefore those of carbendazim on freshwater populations could not be completely deduced from the latter's taxonomic relation with the pest organisms, carbendazim it is supposed to control. The fungicide appeared to have the mode of action of a biocide rather than a chemical with a specific mode of action. Due to the decline of many invertebrates and the concomitant reduction in grazing pressure, the chlorophyll-a level and the abundance values of some phytoplankton taxa increased at the two highest concentrations (330 and 1000 µg/L).The "eutrophication-like" consequences of insecticide contamination have also often been reported and discussed in the literature (e.g. DeNoyelles et al., 1994, Cuppen et al., 1995). The increased abundance of algae due to a decrease in susceptible herbivores is a commonly reported consequence of insecticide contamination (Van Wijngaarden et al., 1998).In the present thesis, the occurrence of herbicides in the aquatic ecosystem is regarded as an undesirable side effect of its use on land. However, herbicides are also deliberately released into aquatic ecosystems for the control of nuisance aquatic vegetation (Pieterse and Murphy, 1990). Aquatic weeds are most commonly removed using compounds with a mode of action specific to macrophytes. Since algae are relatively tolerant to these chemicals (Lahr et al., 1998), they may increase their biomass due to reduced competition for nutrients (Kobriae and Whyte, 1996). Terrestrial weeds are, in the Netherlands, usually controlled by means of photosynthesis-inhibiting herbicides (NEFYTO, 1996). Although their mechanism is different, chapter 3 shows that prolonged exposure to the photosynthesis-inhibiting herbicide linuron may also result in a shift from macrophyte dominance to plankton dominance. The review published by Lahr et al. (1998) shows that this may be true for photosynthesis-inhibiting herbicides in general.The effects of fungicides are largely unstudied, but chapter 4 indicates that fungicide contamination can also cause elevated algal densities. This means that all three pesticides can contribute to "eutrophication-like" effects, though the mechanisms differ. The significance of realistic concentrations of pesticides in causing symptoms of eutrophication in surface waters, however, largely remains to be investigated.Tools to evaluate microcosm and mesocosm experimentsSemi-field experiments are usually evaluated at the taxon level. Since many species normally have low abundance values and/or show high variability (Van Wijngaarden et al., 1996), this approach has the great disadvantage that only a limited number of species can be properly analysed. This means that a substantial part of the information gathered is not used for the evaluation. This thesis presents a new multivariate tool for the analysis of treatment effects at the community level. Multivariate techniques have already been used for a long time in ecology to analyse the relation between communities and their environment. The most commonly used ordination technique is correspondence analysis, which is based on the bell-shaped unimodal model. This model fits in with the theory of the rise and fall in a preference of a species along an environmental gradient, described by their optimum and tolerance.Chapter 7 indicates why clustering and ordination based on correspondence analysis are not suitable for the analysis of the ecotoxicological data sets presented in this thesis. It argues that species normally have no optimum along the environmental axis of a stressor such as pesticides. Their response is more accurately described by a linear method; expected direct effects will increase with the concentration. On the basis of laboratory tests, this relation between the endpoint and the concentration of stressor is assumed to be sigmoid, and it is argued that a linear response model is a good approximation of this.Chapters 2 and 3 use Redundancy Analysis (RDA) to elucidate the effects of pesticides at the community level. RDA is the constrained version of the well-known ordination technique Principal Component Analysis (PCA) and is based on a linear response model (Jongman et al., 1995). In chapters 2 and 3 the analysis is constrained to the variance explained by treatment, time and their interaction. It was concluded that RDA successfully summarised the effects of a pesticide on a community in a single diagram, and is very useful especially when combined with Monte Carlo permutation tests for the determination of the significance of treatment effects. Kersting and Van den Brink (1997), however, found that output from RDA can sometimes result in very cluttered diagrams.Chapter 5 presents a new method, termed the Principal Response Curves, which overcomes this problem. PRC is based on RDA and extracts the first principal component from the treatment variance, by excluding from the analysis the variance explained by time as well as differences between replicates. It results in an easy-to-read diagram, showing the deviations of all treatments from the control in time. In contrast to most other techniques, it also allows a quantitative interpretation down to the species level. Chapter 6 introduces the rank 2 model of PRC, this means that after the extraction of the first basic response pattern, a second pattern is extracted, which expresses the most important deviation from the first response present in the data set. The second pattern is of particular importance if no single dominant response pattern is present in a data set but several sub-dominant ones occur. In chapter 6 this is illustrated by an analysis of the invertebrate and phytoplankton data sets of a microcosm experiment with two stressors, the insecticide chlorpyrifos and nutrient additions. This example shows that PRC is also able to summarise several different response patterns in two diagrams.Microcosm and mesocosm experiments are often said to be of limited value due to ecological variability and noise. From the experiments and statistical tools as described in this thesis we can conclude that despite the noise clear response patterns are revealed, if experiments are properly designed and analysed. Chapters 2, 3 and 4 illustrate that, even with a limited number of replicates, an ecological threshold level (e.g. NOEC ecosystem ) and an effect-chain covering different trophic levels can be obtained.Suggestions for future researchIn normal agricultural practice, protection of crops from pest organisms is not achieved by the application of a single compound; usually, several different compounds with different target organisms are used. Some pesticides are also administered repeatedly. The effects of combinations of pesticides on freshwater ecosystems are, however, largely unstudied (Hartgers et al., 1998). Therefore, it is important to develop criteria for the ecological risk assessment of mixtures of compounds, using realistic pesticide treatment regimes for particular crops.The problem of combination toxicity becomes even more complex when other substances used in agricultural areas, such as fertilisers, are taken into account. The combined effects of eutrophication and contaminant stress are largely unknown. It can be expected, however, that the trophic status of an ecosystem will alter the effects of pesticides (Chapter 6; Kramer et al., 1997).The ecological effect chain resulting from the experiments with the herbicide linuron and fungicide carbendazim demonstrated that microcosm and mesocosm experiments with pesticides as stressors can be very useful tools to investigate trophic interactions in aquatic ecosystems. The results of these experiments are currently being used to build a food-web model (Traas et al., 1998). Such models are considered to hold great promise for an improved understanding of ecosystem functioning and may eventually provide the ability to predict effects of contaminants at ecosystem level (Health Council of the Netherlands, 1997). The greatest obstacles that have to be overcome are the lack of solid data on parameter values (data on for instance maximum growth rate) and the lack of validation. This means that the further development of food web models require not only laboratory research on parameters values but also semi-field research for the collection of validation data sets (Health Council of the Netherlands, 1997).The modeling of direct effects and recovery patterns at the population level can be of great use for an assessment of the risks and a ranking of the effects of pesticides. For the future, modeling treatment effects and recovery patterns may be of great value as a research tool but also as a predictive tool. Models have the advantage that they allow integration of ecological and ecotoxicological knowledge, something that was largely absent from ecotoxicology until a few years ago. Development of these models will allow to a better evaluation of microcosm and mesocosm experiments performed for scientific or registration purposes.</p

    Advantages and challenges associated with implementing an ecosystem services approach to ecological risk assessment for chemicals

    Get PDF
    The ecosystem services (ES) approach is gaining broad interest in regulatory and policy arenas for use in landscape management and ecological risk assessment. It has the potential to bring greater ecological relevance to the setting of environmental protection goals and to the assessment of the ecological risk posed by chemicals. A workshop, organised under the auspices of the Society of Environmental Toxicology and Chemistry Europe, brought together scientific experts from European regulatory authorities, the chemical industry and academia to discuss and evaluate the challenges associated with implementing an ES approach to chemical ecological risk assessment (ERA). Clear advantages of using an ES approach in prospective and retrospective ERA were identified, including: making ERA spatially explicit and of relevance to management decisions (i.e. indicating what ES to protect and where); improving transparency in communicating risks and trade-offs; integrating across multiple stressors, scales, habitats and policies. A number of challenges were also identified including: the potential for increased complexity in assessments; greater data requirements; limitations in linking endpoints derived from current ecotoxicity tests to impacts on ES. In principle, the approach was applicable to all chemical sectors, but the scale of the challenge of applying an ES approach to general chemicals with widespread and dispersive uses leading to broad environmental exposure, was highlighted. There was agreement that ES-based risk assessment should be based on the magnitude of impact rather than on toxicity thresholds. The need for more bioassays/tests with functional endpoints was recognized, as was the role of modelling and the need for ecological production functions to link measurement endpoints to assessment endpoints. Finally, the value of developing environmental scenarios that can be combined with spatial information on exposure, ES delivery and service provider vulnerability was recognized
    corecore